Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Joseph E. Gonzalez

Come to Berkeley
Come to Berkeley
Lecture 24.06 - Precision and Recall
Lecture 24.06 - Precision and Recall
Lecture 24.05 - Decision Rules
Lecture 24.05 - Decision Rules
Lecture 24.03 - Fitting Logisitc Regression in pytorch
Lecture 24.03 - Fitting Logisitc Regression in pytorch
Lecture 24.02 - Logistic Model and Function
Lecture 24.02 - Logistic Model and Function
Lecture 24.04 Fitting LR in SKLearn
Lecture 24.04 Fitting LR in SKLearn
Lecture 24.01 - Classification by Estimating Proportions
Lecture 24.01 - Classification by Estimating Proportions
Lecture 24.00 - Recap of Classification Part 1
Lecture 24.00 - Recap of Classification Part 1
Lecture 19.06 - Lasso in Scikit Learn
Lecture 19.06 - Lasso in Scikit Learn
Lecture 19.05 - Ridge Regression in Scikit Learn
Lecture 19.05 - Ridge Regression in Scikit Learn
Lecture 19.03 - Regularization Concepts
Lecture 19.03 - Regularization Concepts
Lecture 19.02 - Review of Cross Validation
Lecture 19.02 - Review of Cross Validation
Lecture 19.04 - Regularization Concepts in the Notebook
Lecture 19.04 - Regularization Concepts in the Notebook
Lecture 19.01 - Building The Basic Model (Recap from Lecture 18)
Lecture 19.01 - Building The Basic Model (Recap from Lecture 18)
Lecture 19.00 - Lecture Overview
Lecture 19.00 - Lecture Overview
Lecture 18.03 - Using SKLearn Pipelines
Lecture 18.03 - Using SKLearn Pipelines
Lecture 18.04 - Cross Validation
Lecture 18.04 - Cross Validation
Lecture 18.02 - Building and Testing a Simple Model
Lecture 18.02 - Building and Testing a Simple Model
Lecture 18.01 - Constructing a Train Test Split using SkLearn
Lecture 18.01 - Constructing a Train Test Split using SkLearn
Lecture 18.00 - The Train Test Split and Cross Validation
Lecture 18.00 - The Train Test Split and Cross Validation
Lecture 17.05 - Overfitting
Lecture 17.05 - Overfitting
Lecture 17.04 - RBF Features + Too Many Features
Lecture 17.04 - RBF Features + Too Many Features
Lecture 17.03 - Redundant Features
Lecture 17.03 - Redundant Features
Lecture 17.02 - Data and Model Setup
Lecture 17.02 - Data and Model Setup
Lecture 17.01 - Overview of the Pitfalls of Feature Engineering
Lecture 17.01 - Overview of the Pitfalls of Feature Engineering
Lecture 17.00 - Posting Lectures
Lecture 17.00 - Posting Lectures
Lecture 16.04 - Feature Engineering
Lecture 16.04 - Feature Engineering
Lecture 16.03 - Non-linear Features
Lecture 16.03 - Non-linear Features
Lecture 16.02 - Feature Functions
Lecture 16.02 - Feature Functions
Lecture 15.01 - Review of Modeling Recipe
Lecture 15.01 - Review of Modeling Recipe
  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]