video
2dn
video2dn
Найти
Сохранить видео с ютуба
Категории
Музыка
Кино и Анимация
Автомобили
Животные
Спорт
Путешествия
Игры
Люди и Блоги
Юмор
Развлечения
Новости и Политика
Howto и Стиль
Diy своими руками
Образование
Наука и Технологии
Некоммерческие Организации
О сайте
Dr. Md. Masum Murshed
Rings and Modules
Real Analysis
RK methods
Shooting Methods
This is a parsonal chanel
Fourth Year Project: Lecture 1 (Image processing using Paint Software)
Nonlinear shooting method for second order Boundary value problem with MATLAB code
Linear Shooting Method for BVP with MATLAB code
Classical runge-kutta 4th order method for higher order IVPs with MATLAB code
Classical runge-kutta 4th order method for a system of IVPs with MATLAB code
Classical Runge kutta 4th order method for 1st order IVPs with MATLAB code | Math Practical | Lec 4
Linear shooting method | Numerical Analysis | Math Practical | Lecture 3 |
Cubic Spline Interpolation | Numerical Analysis | Math Practical | Lecture 2 (last part) MATLAB code
Cubic Spline Interpolation | Numerical Analysis | Math Practical | Lecture 2|
Cubic Spline Interpolation | Numerical Analysis | Math Practical | Lecture 1|
Numerical Analysis | Lec-2 | Solution of algebraic and transcendental equations | Bisection Method |
Approximations and Errors | Precision and Accuracy | Significant figures | Absolute, relative errors
EMSc | Real Analysic | EM 1101
Lec 33 | HomR(M, M) is a Ring | homomorphism 1-1 iff kernel={0} | Exact and short exact sequence |
Lec 32 | If R is a commutative ring and M, M′ are R-modules then the set HomR(M, M′) is an R-module
Lecture 31 | Composition and sum of two R-homomorphisms | Kernel and Image of R-homomorphism
Lec 30 | Ring | Left and Right R-Module | R-Module| Bi-Module |Factor Module | R-homomorphism
Tangent and normal | Angle between two curves |
Partial Differentiation | Euler's Theorem |
Maxima and Minima
Expansion Of Function | Rolles Theorem | Lagrange's Mean Value theorem | Cauchy' Mean Value theorem
Calculus I | Leibnitz's Theorem and its application
Real Analysis II | The lebesgue theory | Lec 6| Measurable Space| Measure Space| lebesgue integral |
Real Analysis II | The lebesgue theory | Lec 5 | Simple function | Lebesgue integration |
Real Analysis II | The lebesgue theory | Lec 4 | Sigma Algebra | Measurable Space | Measure Space |
Real Analysis I || Derivative || Lecture 3 ||
Real Analysis II | The lebesgue theory | Lec 3 | Topological Space | Sigma Algebra | Measure Space |
Real Analysis I || Derivative || Lecture 2 || Generalized Mean Value Theorem ||
Real Analysis I || Derivative || Lecture 1 ||
Real II | Ring of sets & Sigma ring of sets | Additive & countably additive set function | Lec I |