Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Speed Up Image Processing with Multithreading in Python

  • vlogize
  • 2025-09-06
  • 4
Speed Up Image Processing with Multithreading in Python
How can use I use multithreading to speed this up?pythonmultithreadingperformance
  • ok logo

Скачать Speed Up Image Processing with Multithreading in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Speed Up Image Processing with Multithreading in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Speed Up Image Processing with Multithreading in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Speed Up Image Processing with Multithreading in Python

Discover how to effectively use `multithreading` and `ProcessPoolExecutor` in Python to speed up your image processing tasks, particularly when working with OpenCV's face detection.
---
This video is based on the question https://stackoverflow.com/q/63197127/ asked by the user 'yudhiesh' ( https://stackoverflow.com/u/13337635/ ) and on the answer https://stackoverflow.com/a/63197804/ provided by the user 'yudhiesh' ( https://stackoverflow.com/u/13337635/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How can use I use multithreading to speed this up?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Boosting Your Image Processing Speed with Multithreading in Python

Image processing can be a time-consuming task, especially when working with large datasets. If you find yourself staring at the clock while waiting for your face detection script to finish processing thousands of images, you are not alone. Many developers face challenges when it comes to optimizing their scripts for performance. One common solution is the use of multithreading.

This guide explores how to implement multithreading in Python using ProcessPoolExecutor to drastically reduce processing time. We’ll specifically address a scenario involving face detection on 620,000 frames using OpenCV’s DNN face detector.



The Problem

Imagine trying to extract faces from 620,000 frames on your laptop, where each frame takes nearly one second to process. This method results in a staggering 172 hours of processing time! You have a laptop with four CPU cores and a hard drive with a read and write speed of about 100 MB/s. The goal is to leverage multithreading to speed up this time-consuming task.

The Initial Code

The original code traverses your hard drive to find image files and applies face extraction using OpenCV. Here’s a simplified overview of the function responsible for face extraction:

[[See Video to Reveal this Text or Code Snippet]]

While this code works, it is not efficient. In essence, we need to make use of Python's concurrent processing capabilities to handle multiple images at once.



The Solution: Using ProcessPoolExecutor

To achieve significant performance gains, a switch from single-thread execution to concurrent processing is necessary. By applying ProcessPoolExecutor, we can utilize multiple cores of the CPU effectively.

Key Changes to Implement

Import Required Libraries:
First, ensure that you have the necessary libraries imported for using concurrent futures.

[[See Video to Reveal this Text or Code Snippet]]

Modify the File Path Function:
The filePath function should be designed to initiate parallel processing of images. Here is an updated version using ProcessPoolExecutor:

[[See Video to Reveal this Text or Code Snippet]]

Redefine extractFaces:
The extractFaces function remains mostly unchanged but benefits from being called concurrently, which drastically reduces the total execution time.

Sample Code After Modifications

Here’s how your code could look after implementing these changes:

[[See Video to Reveal this Text or Code Snippet]]

Performance Gains

After implementing these changes, the processing time for each frame was reduced to 0.09-0.1 seconds per image. This reduction is remarkable, allowing the entire processing task to be completed much faster, potentially in just a few hours instead of days.



Conclusion

Using multithreading in Python through ProcessPoolExecutor is an effective technique for improving the performance of CPU-bound tasks, such as image processing with OpenCV. By rewriting your original code to incorporate concurrent futures, you can significantly reduce waiting times and optimize your workflow.

Next time you find yourself facing performance bottlenecks in image processing, consider the power of multithreading to help you speed things up!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]