Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Napkin Math For Fine Tuning Pt. 1 w/Johno Whitaker

  • Hamel Husain
  • 2024-06-30
  • 3625
Napkin Math For Fine Tuning Pt. 1 w/Johno Whitaker
LLMsApplied-llmsmastering llmsragfine tuningprompt engineeringbuilding applicationsevalsparlance labsdevelopersdata scienceRetrieval Augmented Generation
  • ok logo

Скачать Napkin Math For Fine Tuning Pt. 1 w/Johno Whitaker бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Napkin Math For Fine Tuning Pt. 1 w/Johno Whitaker или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Napkin Math For Fine Tuning Pt. 1 w/Johno Whitaker бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Napkin Math For Fine Tuning Pt. 1 w/Johno Whitaker

Join the AI Evals Course starting Jan 27, 2026: https://maven.com/parlance-labs/evals...

. We will show you how to build intuition around training performance with a focus on GPU-poor fine tuning.

Part 2 of this talk:    • Napkin Math For Fine Tuning Pt. 2 w/Johno ...  

More resources available here:
https://parlance-labs.com/education/f...


00:00 Introduction
Johno introduces the topic "Napkin Math for Fine Tuning," aiming to answer common questions related to model training, especially for beginners in fine-tuning large existing models.

01:23 About Johno and AnswerAI
Johno shares his background and his work at AnswerAI, an applied R&D lab focusing on the societal benefits of AI.

03:18 Plan for the Talk
Johno outlines the structure of the talk, including objectives, running experiments, and live napkin math to estimate memory use.

04:40 Training and Fine-Tuning Loop
Description of the training loop: feeding data through a model, measuring accuracy, updating the model, and repeating the process.

09:05 Hardware Considerations
Discussion on the different hardware components (CPU, GPU, RAM) and how they affect training performance.

12:28 Tricks for Efficient Training
Overview of various techniques to optimize training efficiency, including LoRa, quantization, and CPU offloading.

13:12 Full Fine-Tuning
Describes the parameters and memory involved with full fine-tuning

18:14 LoRA
Detailed explanation of full fine-tuning versus parameter-efficient fine-tuning techniques like LoRa.

21:04 Quantization and Memory Savings
Discussion on quantization methods to reduce memory usage and enable training of larger models.

23:10 Combining Techniques
Combining different techniques like quantization and LoRa to maximize training efficiency.

22:55 Running Experiments
Importance of running controlled experiments to understand the impact of various training parameters.

25:46 CPU Offloading
How CPU offloading works and the tradeoffs.

28:31 Real-World Example
Demo of memory optimization and problem-solving during model training, with code. This also includes pragmatic ways to profile your code.

45:44 Case Study: QLoRA + FSDP
Discussion of QLorA with FSDP, along with a discussion of tradeoffs.

54:25 Recap / Conclusion
Johno summarizes the key points of his talk.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]