Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Fellowship: OMNI3DA, Large Benchmark and Model for 3D Object Detection

  • Launchpad
  • 2022-11-10
  • 247
Fellowship: OMNI3DA, Large Benchmark and Model for 3D Object Detection
  • ok logo

Скачать Fellowship: OMNI3DA, Large Benchmark and Model for 3D Object Detection бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Fellowship: OMNI3DA, Large Benchmark and Model for 3D Object Detection или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Fellowship: OMNI3DA, Large Benchmark and Model for 3D Object Detection бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Fellowship: OMNI3DA, Large Benchmark and Model for 3D Object Detection

#artificialintelligence #arxiv #datascience #machinelearning #deeplearning
Link to paper: https://paperswithcode.com/paper/omni...
Paper by: Garrick Brazil, Julian Straub, Nikhila Ravi, Justin Johnson, Georgia Gkioxari
Presentation by Fellowship.ai team: https://www.fellowship.ai/
Fellowship.ai is brought to you by Launchpad.ai: https://www.launchpad.ai/
Launchpad brings cutting-edge technologies and AI applications to organizations, to learn more about our products and services check: https://www.launchpad.ai/ai-developme...
_____________________________________________________________________
Abstract: Recognizing scenes and objects in 3D from a single image is a longstanding goal of computer vision with applications in robotics and AR/VR. For 2D recognition, large datasets and scalable solutions have led to unprecedented advances. In 3D, existing benchmarks are small in size and approaches specialize in few object categories and specific domains, e.g. urban driving scenes. Motivated by the success of 2D recognition, we revisit the task of 3D object detection by introducing a large benchmark, called Omni3D. Omni3D re-purposes and combines existing datasets resulting in 234k images annotated with more than 3 million instances and 97 categories.3D detection at such scale is challenging due to variations in camera intrinsics and the rich diversity of scene and object types. We propose a model, called Cube R-CNN, designed to generalize across camera and scene types with a unified approach. We show that Cube R-CNN outperforms prior works on the larger Omni3D and existing benchmarks. Finally, we prove that Omni3D is a powerful dataset for 3D object recognition, show that it improves single-dataset performance and can accelerate learning on new smaller datasets via pre-training. Code and demo are available at https://github.com/facebookresearch/o....

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]