Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Use Pandas to Get Values from One Column Based on Conditions in Another

  • vlogize
  • 2025-07-29
  • 0
How to Use Pandas to Get Values from One Column Based on Conditions in Another
Get value in other cell in same row when if condition in for loop is metpythonpandasloopsindexing
  • ok logo

Скачать How to Use Pandas to Get Values from One Column Based on Conditions in Another бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Use Pandas to Get Values from One Column Based on Conditions in Another или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Use Pandas to Get Values from One Column Based on Conditions in Another бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Use Pandas to Get Values from One Column Based on Conditions in Another

Discover how to loop through a DataFrame and extract values using `Pandas` with ease. Learn effective methods for indexing based on specific conditions!
---
This video is based on the question https://stackoverflow.com/q/68501676/ asked by the user 'GC2023' ( https://stackoverflow.com/u/16400244/ ) and on the answer https://stackoverflow.com/a/68501712/ provided by the user 'Anurag Dabas' ( https://stackoverflow.com/u/14289892/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Get value in other cell in same row when if condition in for loop is met

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering Conditional Value Extraction in Pandas DataFrames

When working with data in Pandas, you may find yourself needing to extract values from one column based on conditions from another column within the same row. This is a common task, especially when analyzing datasets that require specific insights. Today, we'll address a particular scenario: How to get the value from one cell in a row when a condition is met in another cell of the same row.

The Problem Statement

Let’s say you have a DataFrame that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

In this case, you want to loop through the "value" column, and whenever the value is equal to 'a', you need to retrieve the corresponding value from the "index" column in the same row. Simply recording all indices may lead to complications with the rest of your code, so it’s essential to extract these values accurately and efficiently.

Solution Overview

To achieve this, we can use Boolean masking in conjunction with the loc accessor in Pandas. This method allows us to filter the DataFrame based on certain conditions and can be implemented using a few simple lines of code.

Method 1: Extract Indices with Boolean Masking

If your goal is to simply extract the indices of rows where the value is 'a', you can execute the following code:

[[See Video to Reveal this Text or Code Snippet]]

This line of code does the following:

df['value'].eq('a') creates a Boolean mask that returns True for rows where the value is 'a'.

df.loc[...] then selects the "index" values where this condition is true.

.tolist() converts the output into a list format.

The output from the code above will look like this:

[[See Video to Reveal this Text or Code Snippet]]

Here, we successfully extracted the indices 0 and 9, where the condition is met.

Method 2: Creating a New Column in the DataFrame

If you intend to create a new column in the DataFrame that shows the "index" value wherever the corresponding "value" is 'a', you can use the following approach:

[[See Video to Reveal this Text or Code Snippet]]

Here's what this code snippet does:

df['value'].eq('a') again generates a Boolean Series that indicates where "value" is 'a'.

df['index'].where(...) assigns the values from the "index" column wherever the condition is true. The rest of the entries become NaN (Not a Number), effectively filtering the indices to just where 'a' appears.

The resulting DataFrame would resemble:

[[See Video to Reveal this Text or Code Snippet]]

Summary of Key Steps

Utilize Boolean masking: This approach allows for conditional selections based on criteria.

Making use of loc and where functionalities: These Pandas features are powerful for extracting and manipulating data within DataFrames.

Output appearance: Depending upon your needs, you can choose to collect results in a list or create a new column to enhance your DataFrame.

By using these techniques, you can efficiently manage and analyze your data without compromising the integrity of your working variables. For more intricate DataFrame manipulations, Pandas offers a plethora of functionalities that can cater to your data manipulation needs effectively.

Conclusion

Looping through DataFrame columns and extracting values based on conditions may seem daunting initially, but with the right Pandas functions, it can be managed smoothly. Whether you just want to extract values into a list or add them to a new column, the techniques discussed here will streamline your data processing tasks.

For more queries on Python and Pandas, feel free to reach out in the comments below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]