Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Physics+ Pendulum in Lagrangian Mechanics: UNIZOR.COM - Physics+ 4 All - Lagrangian

  • Zor Shekhtman on UNIZOR Education
  • 2025-08-23
  • 99
Physics+ Pendulum in Lagrangian Mechanics: UNIZOR.COM - Physics+ 4 All - Lagrangian
EducationMathematicsHomeschoolingAdvancedUnizorProblemsExamsPhysicsPendulumLagrangianPotential EnergyKinetic EnergyEulerLagrangeMultidimensionalDerivativePartial Derivative
  • ok logo

Скачать Physics+ Pendulum in Lagrangian Mechanics: UNIZOR.COM - Physics+ 4 All - Lagrangian бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Physics+ Pendulum in Lagrangian Mechanics: UNIZOR.COM - Physics+ 4 All - Lagrangian или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Physics+ Pendulum in Lagrangian Mechanics: UNIZOR.COM - Physics+ 4 All - Lagrangian бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Physics+ Pendulum in Lagrangian Mechanics: UNIZOR.COM - Physics+ 4 All - Lagrangian

UNIZOR.COM - Creative Mind through Art of Mathematics
Read full text of notes for this lecture on UNIZOR.COM - Physics+ 4 All - Lagrangian - Pendulum

Notes to a video lecture on UNIZOR.COM

Mathematical Pendulum

Plain Pendulum

We will illustrate the application of Lagrangian mechanics by analyzing the movement of a mathematical pendulum - a problem we have already discussed in the Physics 4 Teens - Mechanics - Pendulum, Spring - Pendulum using the Newtonian approach.

We recommend reviewing the lecture mentioned above and refresh the Newtonian method of deriving the main equation of motion of the pendulum:
α"(t) = −(g/l)·sin(α(t))
which was obtained from properly determining the force F that moves a pendulum as a vector sum of the gravity force directed vertically down and the tension of an unstretchable thread that keeps an object at the free end of a thread on a constant distance from the fixed end of a thread.

Let's apply the Lagrangian mechanics to this problem using an angle of a thread with a vertical α as the one and only parameter that determines a position of an object.

The Lagrangian is the difference between kinetic and potential energies.
L(α(t),α'(t)) = Ekin(α'(t)) − Epot(α(t))

Kinetic energy depends on mass M and linear speed of an object along its circular trajectory v=l·α'(t)
Ekin = ½M·v² = ½M·l²·[α'(t)]²

Potential energy depends on a mass of an object M, its height over the ground h(t) and an acceleration of free fall g.
Epot(t) = M·g·h(t)
If the origin of our coordinates, the fixed end of a thread, is at height H over the ground,
h = H − l·cos(α)
and, therefore,
Epot(t) = M·g·[H−l·cos(α(t))]

Now we can construct the Euler-Lagrange equation
(∂/∂α)L(α(t),α'(t)) = (d/dt)(∂/∂α')L(α(t),α'(t))

Spring Pendulum

A weightless spring replaces an unstretchable thread of the previous problem.
The spring and an object on its end are in a weightless frictionless tube that maintains a straight form, so an object has two degrees of freedom - radial inside a tube stretching and squeezing a spring and pseudo-circular as it moves together with a tube in a pendulum like motion.

The problem of specifying the motion of an object is much more complex here because the spring tension is changing not only with an angle α(t) but also because of the movement of an object within a tube.

However, using the Langrangian mechanics, this problem can be analyzed with much less efforts and the corresponding differential equation can be constructed relatively easy.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]