Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Nanomotors: When Chemistry Becomes Motion

  • AI Labs: Nanotechnology
  • 2025-12-18
  • 182
Nanomotors: When Chemistry Becomes Motion
catalytic nanomotorsJanus swimmershydrogen peroxide decompositionself-diffusiophoresisself-electrophoresisbubble propulsionlow Reynolds numberBrownian motionPéclet numberactive mattermotility-induced phase separationswarming vorticesActive Brownian Particlesenzyme-powered motorslight-activated motors
  • ok logo

Скачать Nanomotors: When Chemistry Becomes Motion бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Nanomotors: When Chemistry Becomes Motion или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Nanomotors: When Chemistry Becomes Motion бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Nanomotors: When Chemistry Becomes Motion

Catalytic nanomotors are synthetic microswimmers that convert chemical fuel into directed motion through asymmetric surface reactions, operating in the low-Reynolds-number world where viscosity dominates. This lecture explains propulsion mechanisms, swarm self-organization (MIPS, vortices), the Active Brownian Particle model, and the key hurdles toward biocompatible, controllable, programmable swarms. Catalytic nanomotors are introduced as synthetic “microswimmers”: tiny particles that convert chemical reactions into directed motion in liquid. The core idea is asymmetry. A common design is a Janus particle with one side coated in a catalyst (often platinum). In a fuel solution, reactions occur more strongly on the catalytic side, creating local gradients (in concentration, ions, and sometimes bubbles) that push the particle forward. The lecture uses these motors to make a bigger point: many life-like behaviors—swarming, clustering, vortex formation—can emerge from physics alone, without any biology, sensing, or intelligence. It then explains why motion at these scales is counterintuitive: viscosity dominates, so motors stop almost immediately when thrust stops, and Brownian motion constantly perturbs them. To quantify “swimming vs randomness,” the lecture compares directed propulsion with diffusion using dimensionless thinking (how persistent the motion is before rotational wandering scrambles direction). When many motors are present, they become an active matter system: each motor reshapes the local chemical environment, stirs the fluid, and collides with neighbors, leading to collective states such as dynamic clustering (often described as motility-induced phase separation) and coherent flows. Applications are presented as motivating targets—drug delivery, remediation, microsurgery, and as model systems for nonequilibrium physics—followed by the realistic bottlenecks: biocompatible fuels, steering/control, efficiency, and theory that can predict swarms. One important scientific correction: the lecture’s “active energy per motor” scale is plausibly around a few thousandths of a trillionth of a joule (about hundreds of thermal-energy units), not the vastly larger value stated; the qualitative conclusion (strongly out of equilibrium) is right, but the exponent appears off.

What you will learn:
What catalytic nanomotors are and why asymmetry is the engine of motion
The three main propulsion routes: self-diffusiophoresis, self-electrophoresis, and bubble propulsion
Why microscale swimming is a viscous-world problem, not an inertia problem
How to think about directed motion vs Brownian diffusion in micron swimmers
How swarms self-organize via chemical coupling, hydrodynamics, and collisions
Why clustering and vortices can arise as generic active-matter phenomena
Where the field is going: light-activated, enzyme-powered, magnetic hybrids, and programmable assemblies
The grand challenge: turning “cool motion” into controllable, safe, task-performing systems

Timestamps:
00:00 — What catalytic nanomotors are and why they look “life-like”
00:32 — How propulsion works: gradients and the three main mechanisms
01:39 — How fast they can move and why it is impressive at their scale
03:23 — Microscale physics: viscosity-dominated motion and Brownian effects
05:11 — Why many motors together show collective behavior
06:21 — Emergent patterns: clustering, coherent motion, vortices (active matter)
08:38 — Comparison to living systems: similarities and the crucial differences
10:21 — Energy and nonequilibrium thinking (with a note on scale estimates)
10:57 — Applications and the biggest engineering/science challenges
12:37 — Recent advances: light-driven, enzyme-fueled, magnetic guidance, programmable assembly
13:43 — Minimal modeling: active Brownian particle picture for persistent motion + noise
14:23 — Nanomotors vs bacteria: matched scales, different control and adaptability
15:34 — Future directions: programmable swarms, memory/learning, biohybrids
16:05 — Key recap: mechanisms, viscous regime, collective physics, life-like emergence
17:08 — Why this field bridges chemistry, physics, materials science, and biology
17:39 — Closing: implications for technology and for understanding self-organization

#CatalyticNanomotors #JanusParticles #Microswimmers #ActiveMatter #SwarmingPhysics #Nanotechnology #MicroRobotics

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]