Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Artificial Intelligence in Biomarker Discovery

  • AI BIOFORGE
  • 2024-10-13
  • 254
Artificial Intelligence in Biomarker Discovery
  • ok logo

Скачать Artificial Intelligence in Biomarker Discovery бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Artificial Intelligence in Biomarker Discovery или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Artificial Intelligence in Biomarker Discovery бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Artificial Intelligence in Biomarker Discovery

Artificial intelligence (AI) is playing a transformative role in biomarker discovery, particularly in fields like genomics, proteomics, and medical imaging. Biomarkers are biological indicators, such as proteins, genes, or metabolites, that can signal the presence of disease, predict disease progression, or indicate responses to therapies. The discovery of these biomarkers is critical for personalized medicine and drug development.

Here’s how AI contributes to biomarker discovery:

1. *Data Processing and Integration*
**Handling Big Data**: Biomarker discovery often involves massive datasets, such as genomic sequences, proteomic profiles, or clinical data. AI algorithms, particularly machine learning (ML) and deep learning (DL) models, can efficiently handle and process large, complex datasets that are difficult for traditional methods.
**Multimodal Data Integration**: AI can combine data from various sources, such as genetic, proteomic, and clinical data, to identify patterns that may indicate a biomarker. For example, combining electronic health records (EHRs), lab test results, and imaging data can reveal potential biomarkers for certain diseases.

2. *Feature Selection and Reduction*
AI techniques can help in identifying the most relevant features or variables from high-dimensional data, which is essential for biomarker discovery. For example, methods like LASSO (Least Absolute Shrinkage and Selection Operator) or random forests can identify the most important genes, proteins, or metabolites linked to disease states.

3. *Predictive Modeling*
**Supervised Learning**: In supervised learning, AI models are trained on labeled datasets (e.g., datasets where the presence of a disease is already known) to identify biomarkers that can predict disease or treatment response. This approach has been widely used in cancer research to find genomic biomarkers that predict patient outcomes.
**Unsupervised Learning**: Unsupervised techniques, such as clustering and dimensionality reduction (e.g., t-SNE, PCA), help discover unknown patterns in data that can lead to new biomarker discoveries, particularly in diseases where the underlying mechanisms are not fully understood.

4. *Image Analysis for Biomarker Discovery*
AI models, especially convolutional neural networks (CNNs), are being applied to medical imaging to discover image-based biomarkers. For example, AI can analyze radiology scans to identify features that may predict cancer aggressiveness or treatment response, often beyond what is detectable by the human eye.

5. *Natural Language Processing (NLP)*
AI-powered NLP can be used to mine scientific literature and medical records for potential biomarkers. By scanning large volumes of research articles, AI can identify relevant studies, genes, or proteins that may act as biomarkers.

6. *Drug Response and Toxicity Prediction*
Biomarkers are often used to predict patient response to drugs or potential toxicity. AI algorithms can model the relationships between genetic data and patient outcomes to predict how certain biomarkers may correlate with drug efficacy or adverse effects. For instance, AI models trained on pharmacogenomic data can identify biomarkers that predict which patients are most likely to benefit from specific treatments.

7. *Omics Data Analysis*
AI is crucial in processing "omics" data—genomics, proteomics, metabolomics, etc. Machine learning models can analyze these datasets to find correlations between gene expression patterns, protein levels, and disease, leading to the discovery of new biomarkers for diagnosis, prognosis, and therapy response.
For example, AI-driven tools can analyze RNA sequencing data to identify differential gene expression linked to disease states or treatment effects.

8. *Clinical Trial Optimization*
AI can help in stratifying patients in clinical trials based on biomarkers, optimizing the selection process to ensure that those most likely to benefit from the therapy are included. This accelerates the development of precision medicine by improving trial design and reducing costs.

9. *AI-Driven Platforms for Biomarker Discovery*
Numerous AI-driven platforms have been developed to aid in biomarker discovery. These platforms use machine learning models trained on diverse biomedical datasets to predict potential biomarkers, such as in cancer, autoimmune diseases, or neurodegenerative conditions. Examples include platforms from companies like IBM Watson Health or BenevolentAI.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]