Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding the nbytes Value in Numpy Arrays: Broadcasting Explained

  • vlogize
  • 2025-04-08
  • 0
Understanding the nbytes Value in Numpy Arrays: Broadcasting Explained
Wrong `nbytes` value in a numpy array after broadcasting with `broadcast_to`pythonarraysnumpy
  • ok logo

Скачать Understanding the nbytes Value in Numpy Arrays: Broadcasting Explained бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding the nbytes Value in Numpy Arrays: Broadcasting Explained или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding the nbytes Value in Numpy Arrays: Broadcasting Explained бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding the nbytes Value in Numpy Arrays: Broadcasting Explained

Explore the behavior of the `nbytes` property in Numpy arrays when using `broadcast_to`. Learn why it reflects logical size rather than actual memory usage.
---
This video is based on the question https://stackoverflow.com/q/74990485/ asked by the user 'SiLiKhon' ( https://stackoverflow.com/u/3801744/ ) and on the answer https://stackoverflow.com/a/74995997/ provided by the user 'hpaulj' ( https://stackoverflow.com/u/901925/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Wrong `nbytes` value in a numpy array after broadcasting with `broadcast_to`

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the nbytes Value in Numpy Arrays: Broadcasting Explained

Introduction

When working with Numpy, many users often encounter unexpected behaviors, especially with properties of arrays like nbytes. A notable case involves the broadcast_to function, which can lead to confusion regarding the reported number of bytes an array occupies. In this post, we will unravel this issue by addressing a specific question: Why does the nbytes value in a Numpy array seem incorrect after using broadcast_to?

The Problem with broadcast_to and nbytes

The Example at Hand

Consider the following code snippet:

[[See Video to Reveal this Text or Code Snippet]]

When this code is run, you might find that:

arr.nbytes outputs a very large number (in this case, 80000000000000), suggesting that the array takes up a massive amount of logical memory.

However, sys.getsizeof(arr) tells a different story, with a much smaller size (only 120 bytes). This discrepancy can raise questions: Is there a bug in Numpy or is this intended behavior?

Dissecting the nbytes Property

What nbytes Really Represents

The core of the confusion lies in what the nbytes property represents. While it might seem at first glance to indicate the number of bytes utilizing memory, nbytes actually reflects the logical size of the Numpy array, not the physical memory utilized. Specifically, it is calculated as:

[[See Video to Reveal this Text or Code Snippet]]

Where:

arr.size is the total number of elements in the array,

arr.itemsize is the size (in bytes) of each individual item in the array.

Understanding Views and Base Arrays

Broadcasting and Views: When you use broadcast_to, it creates a view of a smaller array—essentially a new way to access the original data without actually duplicating it. This means that although nbytes reflects the size of the broadcasted shape, the actual memory usage can be far less than that number.

Base Array Example: For example, if you derived your array from a single value like 0, you would see that the base array is significantly smaller:

[[See Video to Reveal this Text or Code Snippet]]

Practical Examples

To further clarify, consider these two examples using the same concepts:

Simple Broadcast Example:

[[See Video to Reveal this Text or Code Snippet]]

Sliding Window View:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

The behavior of nbytes in Numpy arrays after broadcasting can be surprising if you're not familiar with the underlying concepts. It’s essential to understand that nbytes represents logical size, while properties like sys.getsizeof cover the physical memory usage more accurately.

When utilizing Numpy's broadcasting and view mechanisms, always consider the shape and nature of your arrays to interpret what the numbers mean in context. Understanding these details will enhance your work with Numpy and allow you to troubleshoot issues more effectively.

By grasping these concepts, you'll be better prepared not only to avoid pitfalls when interpreting array properties but also to leverage Numpy effectively in your projects.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]