Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Understanding the numpy.asarray() Performance on Typed MemoryView Objects

  • vlogize
  • 2025-04-16
  • 2
Understanding the numpy.asarray() Performance on Typed MemoryView Objects
How good is the performance of numpy.asarray() on typed MemoryView objects?pythonnumpycython
  • ok logo

Скачать Understanding the numpy.asarray() Performance on Typed MemoryView Objects бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Understanding the numpy.asarray() Performance on Typed MemoryView Objects или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Understanding the numpy.asarray() Performance on Typed MemoryView Objects бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Understanding the numpy.asarray() Performance on Typed MemoryView Objects

Explore the performance implications of using `numpy.asarray()` with typed MemoryView objects and learn best practices for optimizing your Python code.
---
This video is based on the question https://stackoverflow.com/q/66285789/ asked by the user 'Padix Key' ( https://stackoverflow.com/u/7973301/ ) and on the answer https://stackoverflow.com/a/68208983/ provided by the user 'Padix Key' ( https://stackoverflow.com/u/7973301/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How good is the performance of numpy.asarray() on typed MemoryView objects?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Performance of numpy.asarray() on Typed MemoryView Objects

When working with Cython and NumPy in Python, programmers often ask: How well does the numpy.asarray() function perform on typed MemoryView objects? This is a pertinent question, especially for those looking to optimize their code for speed and efficiency. In this guide, we will delve into the inner workings of numpy.asarray() and evaluate its performance, specifically in the context of typed MemoryView objects.

The Background: What is numpy.asarray()?

numpy.asarray() is a powerful function in the NumPy library that converts input data (like lists, tuples, or MemoryView objects) into NumPy arrays. It is commonly used to ensure that data is in the desired ndarray format before performing computations. However, it’s not just a simple conversion; understanding its performance characteristics is crucial, especially when dealing with large datasets or tight loops in performance-sensitive applications.

The Cython Code Example

To gauge the performance of numpy.asarray(), let’s consider the following Cython code snippet that demonstrates how to use asarray() with a typed MemoryView object:

[[See Video to Reveal this Text or Code Snippet]]

In this example, we create a typed MemoryView using NumPy's zeros function to initialize an array of zeros with a specified datatype. Then, we call numpy.asarray() to convert the MemoryView to a NumPy array.

Benchmarking numpy.asarray()

To understand how efficient asarray() is, we set up a benchmarking test. The following two pieces of code illustrate the configuration for our speed test:

Cython Benchmark Code: asarray_benchmark.pyx

[[See Video to Reveal this Text or Code Snippet]]

Main Python Code: main.py

[[See Video to Reveal this Text or Code Snippet]]

In this setup, we execute two operations repeatedly over a large NumPy array using a timer to measure the average time taken per operation.

Result Analysis

The results we obtained were as follows:

[[See Video to Reveal this Text or Code Snippet]]

From our benchmark, we can see that calling asarray() took approximately 1 microsecond (μs) per operation on the testing notebook, while the no-operation (noop) call was significantly faster.

Key Takeaways: Is it Worth Using numpy.asarray()?

Performance Implications: Using numpy.asarray() to convert a MemoryView incurs a notable performance cost (~1 μs) compared to a no-op operation, although this time is relatively stable regardless of the size of the array.

No Data Copying: The operation of asarray() in this context does not involve actual data copying, indicating that the function works efficiently by merely referencing existing data.

Best Practices: It is generally advisable to maintain the original ndarray object rather than relying on asarray() for conversions. This approach helps to minimize unnecessary function calls and enhances performance.

Conclusion

In conclusion, while numpy.asarray() is a useful function for converting data into NumPy arrays, its performance should be carefully considered in critical applications. As demonstrated, the substantial overhead for even a few iterations could compound significantly in larger loops. Always remember to optimize your Cython and Python code by working with ndarray objects directly when possible!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]