Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Use Langchain Text Splitter to Reduce Tokens in Your Text

  • vlogize
  • 2025-08-07
  • 1
How to Use Langchain Text Splitter to Reduce Tokens in Your Text
How to use Langchain text splitter to reduce tokens in my textopenai apilangchainlarge language modelpy langchain
  • ok logo

Скачать How to Use Langchain Text Splitter to Reduce Tokens in Your Text бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Use Langchain Text Splitter to Reduce Tokens in Your Text или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Use Langchain Text Splitter to Reduce Tokens in Your Text бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Use Langchain Text Splitter to Reduce Tokens in Your Text

Discover how to efficiently manage token limits in your text using Langchain text splitter, ensuring you get the most relevant data for your OpenAI API summaries.
---
This video is based on the question https://stackoverflow.com/q/77410975/ asked by the user 'Stephany' ( https://stackoverflow.com/u/19768301/ ) and on the answer https://stackoverflow.com/a/77412930/ provided by the user 'Kayte' ( https://stackoverflow.com/u/16496960/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to use Langchain text splitter to reduce tokens in my text

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Use Langchain Text Splitter to Reduce Tokens in Your Text

Introduction

In the world of natural language processing, managing token limits is crucial, especially when dealing with large texts like PDFs. If you’re using Langchain in conjunction with OpenAI’s API to summarize long PDF documents, you may have encountered challenges with documents that exceed token limits. This guide explains how to effectively use the Langchain text splitter to break down your text, enabling you to retrieve relevant information without hitting those limits.

The Problem

When working with extensive documents, specifically those exceeding 300 pages, it can be frustrating to configure your text inputs to fit within the token limits enforced by models like ChatGPT. You may have attempted various methods to condense your text but haven’t achieved significant success.

Using two primary approaches:

Retrieval Augmented Generation: Utilizing the text splitter.

Text Summarization: Implementing a document chain for summarization.

The core of your problem lies in understanding how the text splitter operates and how it can facilitate your goals.

Understanding the Text Splitter

What is a Text Splitter?

A text splitter is a tool designed to break down your lengthy text into smaller, more manageable chunks based on specified parameters, such as:

Chunk Size: The maximum size of each text chunk.

Chunk Overlap: The amount of overlap between chunks to maintain context.

Code Implementation

Here’s a simple implementation showing how to create a text splitter using Langchain:

[[See Video to Reveal this Text or Code Snippet]]

In this implementation:

chunk_size=1000 specifies that each chunk contains a maximum of 1000 characters.

chunk_overlap=50 ensures that the last 50 characters of one chunk are included in the next chunk. This overlap is crucial for maintaining context and relevance.

Key Benefits

Contextual Relevance: By splitting text into smaller sections, you can query models with the most relevant information instead of overwhelming them with an entire document.

Token Management: While the text splitter doesn’t allow you to increase the amount of text you can input, it ensures you’re providing the most meaningful data within the available token limit.

How to Effectively Use the Text Splitter

1. Review Your Document

Before splitting your document with the text splitter, take a moment to print out your data:

[[See Video to Reveal this Text or Code Snippet]]

This allows you to understand the structure and length of your text, giving you context before splitting.

2. Split the Document

After reviewing, use the text splitter to break it down:

[[See Video to Reveal this Text or Code Snippet]]

3. Analyze the Result

After splitting, it’s helpful to check how many chunks were generated. This will give you insight into how well the splitting process worked for your specific document:

[[See Video to Reveal this Text or Code Snippet]]

4. Use in Retrieval

Now, you can use these smaller chunks for retrieval, focusing on fetching information by relevance instead of passing large texts directly into the model.

Conclusion

In summary, the Langchain text splitter is an essential tool for anyone using large documents with models like OpenAI’s API. While it can’t increase the maximum input size, it enhances your ability to manage and retrieve the most pertinent information within token constraints.

Don’t hesitate to leverage the tools and techniques discussed in this post to streamline your document processing and ensure effective summarization.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]