Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Find the First Non-NaN Value in Shifted Pandas DataFrames Efficiently

  • vlogize
  • 2025-05-27
  • 0
How to Find the First Non-NaN Value in Shifted Pandas DataFrames Efficiently
find first non NaN value in shift pandaspythonpandas
  • ok logo

Скачать How to Find the First Non-NaN Value in Shifted Pandas DataFrames Efficiently бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Find the First Non-NaN Value in Shifted Pandas DataFrames Efficiently или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Find the First Non-NaN Value in Shifted Pandas DataFrames Efficiently бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Find the First Non-NaN Value in Shifted Pandas DataFrames Efficiently

Learn how to compute lagged values in Pandas while skipping NaN entries for cleaner data analysis.
---
This video is based on the question https://stackoverflow.com/q/67335483/ asked by the user 'vojtam' ( https://stackoverflow.com/u/14667788/ ) and on the answer https://stackoverflow.com/a/67335508/ provided by the user 'RMRiver' ( https://stackoverflow.com/u/7008727/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: find first non NaN value in shift pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Dealing with Lagged Values in Pandas

When working with time series data in Python's Pandas library, you often need to compute lagged values. However, a common problem arises when the series contains NaN (Not a Number) values. In this guide, we'll explore a specific use-case: determining how to compute the lag of a column while skipping NaN values.

Understanding the Problem

Consider you have a DataFrame with two columns:

col1, which contains integer values, and

col2, which contains both integer values and NaN.

Here's an example of what your DataFrame might look like:

[[See Video to Reveal this Text or Code Snippet]]

When you attempt to compute a lagged version of col2 using the shift method, you'll notice the presence of NaN values in the resultant column as well:

[[See Video to Reveal this Text or Code Snippet]]

This will yield:

[[See Video to Reveal this Text or Code Snippet]]

As demonstrated, you get lagged values where NaN persists, which is not the desired outcome. Ideally, you'd want to skip over these NaN values to find the most recent non-NaN entry.

The Desired Output

Your aim is to obtain a DataFrame that looks like this:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

To achieve this cleanly, you can use the ffill() method (which stands for "forward fill") alongside shift(). Here's how you can implement this approach:

Using Forward Fill (ffill())

You can combine shift() with ffill() in one line:

[[See Video to Reveal this Text or Code Snippet]]

Explanation

shift(1): This method shifts the values in col2 down, introducing NaN at the first position.

ffill(): The forward fill method takes the last known non-NaN value and fills it forward for all subsequent NaN entries.

Final Code Example

Here's the complete code that demonstrates how to achieve the desired lagged DataFrame without NaN values:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

This method allows you to compute lagged values in a Pandas DataFrame efficiently while skipping NaN values, providing you a cleaner dataset for further analysis.

By implementing shift() alongside ffill(), you can ensure that your lagged columns retain meaningful, non-NaN values, thus enabling more effective time series analysis in your data projects.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]