Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering async/await: Improving API Request Performance in Python

  • vlogize
  • 2025-08-21
  • 0
Mastering async/await: Improving API Request Performance in Python
Beginner async/await question for api requestspythonmultithreadingasync awaitpython asyncio
  • ok logo

Скачать Mastering async/await: Improving API Request Performance in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering async/await: Improving API Request Performance in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering async/await: Improving API Request Performance in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering async/await: Improving API Request Performance in Python

Discover the secrets of using `async/await` in Python to enhance the performance of your API requests and achieve better concurrency.
---
This video is based on the question https://stackoverflow.com/q/63411286/ asked by the user 'MaTok' ( https://stackoverflow.com/u/13924886/ ) and on the answer https://stackoverflow.com/a/63452188/ provided by the user 'jupiterbjy' ( https://stackoverflow.com/u/10909029/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Beginner async/await question for api requests

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering async/await: Improving API Request Performance in Python

In the world of programming, especially when working with API requests, performance is key. As developers, we often find ourselves looking for ways to speed up our applications. One powerful tool in Python's arsenal for handling asynchronous operations is the async and await keywords. In this guide, we’ll take a closer look at how these features work and how you can implement them to optimize your API requests effectively.

Understanding the Problem

Asynchronous programming allows for concurrency, enabling our applications to handle multiple tasks at the same time. However, many beginners struggle with implementing async/await correctly. From the provided code example, it is clear that the asker is facing challenges in getting their async functions to perform as expected for API requests.

The initial code employed techniques that not only blocked the thread but also deviated from best practices. The challenge lies in understanding how to structure async functions properly to achieve maximum performance.

The Provided Code: What's Wrong?

Let's break down the original attempt step by step:

[[See Video to Reveal this Text or Code Snippet]]

Issues Identified

Use of time.sleep(): This function blocks the thread completely, meaning that whilst it is waiting, nothing else can execute.

Use of @ asyncio.coroutine: This decorator is deprecated as of Python 3.8. Instead, you should utilize the async def syntax.

Main function not asynchronous: This further complicates the flow and misuses the event loop.

The Improved Solution

To truly leverage the benefits of asynchronous programming, we can refactor the code. Below is an improved version that adheres to modern standards for writing asynchronous Python code:

[[See Video to Reveal this Text or Code Snippet]]

Key Improvements

Non-Blocking Sleep: By replacing time.sleep(5) with await asyncio.sleep(5), we allow other operations to continue while waiting.

Direct async def Usage: By using async def, the code becomes more intuitive and is compliant with the latest standards.

Streamlined Main Function: The main function is now asynchronous and utilizes the asyncio.run() method, simplifying the event loop management.

Conclusion

Using async and await effectively can drastically improve the performance of API requests in Python. With these concepts, not only do we write cleaner code, but we also harness the true power of concurrency.

As you move forward, always remember that understanding how asynchronous programming works will be invaluable in your development toolkit. The provided improvements will guide you in avoiding common pitfalls and ultimately contribute to enhanced application performance.

Feel free to explore and modify the example code provided; play around with it to further understand how Python's asynchronous features can benefit your projects.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]