Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Transform Your Pandas DataFrame: Create a New Column Based on Matching Values

  • vlogize
  • 2025-05-25
  • 0
Transform Your Pandas DataFrame: Create a New Column Based on Matching Values
  • ok logo

Скачать Transform Your Pandas DataFrame: Create a New Column Based on Matching Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Transform Your Pandas DataFrame: Create a New Column Based on Matching Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Transform Your Pandas DataFrame: Create a New Column Based on Matching Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Transform Your Pandas DataFrame: Create a New Column Based on Matching Values

Learn how to effectively create a new column in a Pandas DataFrame by matching specific values in different rows and columns. Discover the power of merging techniques!
---
This video is based on the question https://stackoverflow.com/q/72206485/ asked by the user 'Holly' ( https://stackoverflow.com/u/15517416/ ) and on the answer https://stackoverflow.com/a/72206615/ provided by the user 'David Erickson' ( https://stackoverflow.com/u/6366770/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Python Pandas: Create new column by matching one column value to a different row [i] and column if a separate column on row [i] equals col one value

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Transform Your Pandas DataFrame: Create a New Column Based on Matching Values

Pandas is a powerful library for data manipulation in Python, but sometimes it can throw a curveball with more complex data arrangements. Today, we're tackling a common challenge—how to create a new column in a DataFrame by matching values from different rows and columns. If you're working with data related to online communities or social media, this post is just for you!

The Problem Explained

Imagine you have a DataFrame (df) that holds user information, including usernames, user IDs, and subreddit interactions. Here’s an example of what your DataFrame looks like:

usernameuser_idsubreddit_idsubr_fav_by'John69'11'5illycat''John69'12'adsgd''Harry12'23'5illycat''adsgd'34'John69''5illycat'45'John69'The Task

You want to add a fifth column, subr_fav_by_id, which captures the user_id of the user found in the subr_fav_by column. This requires us to match usernames from one column to another and extract the corresponding user IDs. Let’s walk through the solution step-by-step!

Step-by-Step Solution

To achieve this, we can use the merge function in Pandas to join the DataFrame with itself based on the relevant columns. Here’s how you can do it:

Step 1: Prepare for Merging

You need to specify what data you want to merge. In this case, we'll create a new DataFrame that contains only username and user_id from the original DataFrame, ensuring we remove any duplicates:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Perform the Merge

Next, we'll merge the original DataFrame (df) with this new unique DataFrame (df_unique). We will use the subr_fav_by column from the original DataFrame and match it to the username column of the unique DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Select the Relevant User ID

Finally, you can add the user_id from the merged DataFrame as a new column in the original DataFrame. This is where we select the last column from the merged result which holds the relevant user IDs:

[[See Video to Reveal this Text or Code Snippet]]

Final DataFrame

After performing the steps above, your DataFrame will look like this:

usernameuser_idsubreddit_idsubr_fav_bysubr_fav_by_id'John69'11'5illycat'4'John69'12'adsgd'3'Harry12'23'5illycat'4'adsgd'34'John69'1'5illycat'45'John69'1Conclusion

Creating new columns based on the values from other rows and columns in a Pandas DataFrame might seem daunting at first. However, by using the merge function thoughtfully, you can efficiently solve these types of problems while keeping your code clear and maintainable.

With this approach, you'll too become adept at manipulating data in Python using the Pandas library. If you have similar challenges or questions, feel free to explore more or ask for help!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]