Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Solving Neutronic Kinetic Equations Using the Radau Method in Python

  • vlogize
  • 2025-09-18
  • 1
Solving Neutronic Kinetic Equations Using the Radau Method in Python
Solving the equations of neutronic kinetic using Radau method from scipy.integrated at pythonpythonscipyodeodeint
  • ok logo

Скачать Solving Neutronic Kinetic Equations Using the Radau Method in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Solving Neutronic Kinetic Equations Using the Radau Method in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Solving Neutronic Kinetic Equations Using the Radau Method in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Solving Neutronic Kinetic Equations Using the Radau Method in Python

Discover how to effectively solve neutronic kinetic equations using the `Radau` method from `scipy.integrate`. This guide provides a step-by-step approach, addressing common errors and offering clear solutions.
---
This video is based on the question https://stackoverflow.com/q/62320932/ asked by the user 'nuclear_engineer' ( https://stackoverflow.com/u/13726397/ ) and on the answer https://stackoverflow.com/a/62322566/ provided by the user 'Lutz Lehmann' ( https://stackoverflow.com/u/3088138/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Solving the equations of neutronic kinetic using Radau method from scipy.integrated at python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Solving Neutronic Kinetic Equations Using the Radau Method in Python

Solving systems of equations, particularly those related to neutronic kinetics, can be daunting, especially when dealing with stiff differential equations. A user recently encountered issues while working with the Radau method in Python's SciPy library for this very purpose. In this guide, we will discuss the problem, the underlying reason for the errors, and an effective solution to implement the Radau method correctly.

The Problem

The user attempted to solve a system of equations representing neutronic kinetics that includes feedback from fuel and coolant temperatures. Upon using the Radau method, they encountered an error that stated:

[[See Video to Reveal this Text or Code Snippet]]

This error typically arises when incompatible arguments are provided in Python, particularly when using numpy arrays in a context where a boolean value is expected.

Understanding the Solution

To effectively resolve this issue, it is essential to note that the Radau method is a stepper class and not a direct integration function. The correct way to utilize it is to use the higher-level interface solve_ivp, which is designed for solving initial value problems. Here’s a breakdown of how to implement the solution:

Step 1: Import Libraries

Make sure to import the necessary libraries, which will include numpy and the solve_ivp function from scipy.integrate.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Define the Function

The function kin should be defined with the arguments t and x. This ensures compatibility with the solve_ivp method. Here’s the function structure as per the user’s initial code:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Set Initial Conditions

Define your initial state and the time array upon which the integration will occur.

[[See Video to Reveal this Text or Code Snippet]]

Step 4: Use solve_ivp

Replace the Radau instantiation with the following solve_ivp function. This method allows for greater control and proper execution for stiff systems:

[[See Video to Reveal this Text or Code Snippet]]

Key Points to Remember

Argument Order: Ensure that your function is defined with the order (t, x).

Control Over Time Step: Use max_step effectively to limit integration into the future based on your system requirements.

Manage Tolerances: Adjusting absolute and relative tolerances is crucial for accurate results, especially for stiff equations.

Output Handling: Remember that the way outputs are structured will differ from those of odeint, so adapt accordingly.

Conclusion

Transitioning from odeint to the Radau method using solve_ivp can enhance the accuracy of your simulations concerning stiff differential equations. The tips provided here will help you troubleshoot common issues and understand how to utilize the Radau method effectively. Harness these techniques to advance your work in neutronic kinetics.

By following this structured approach, you should be able to avoid ambiguity errors and successfully solve complex systems using Python’s powerful SciPy library.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]