Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Evaluating Models Class 10 AI (Code 417) | Accuracy, Precision, Recall & F1 Score Explained

  • Rohit Singh
  • 2026-01-03
  • 68
Evaluating Models Class 10 AI (Code 417) | Accuracy, Precision, Recall & F1 Score Explained
evaluating modelsevaluating models class 10evaluating models class 10 aievaluating models class 10 ai code 417class 10 ai code 417 evaluationevaluating models class 10 one shotevaluating models ai code 417class 10 ai evaluating modelscbse class 10 ai unit 3ai code 417 unit 3model evaluation class 10 aitrain test split class 10 aiaccuracy vs error in aiconfusion matrix class 10precision recall f1 score class 10evaluation metrics in ai
  • ok logo

Скачать Evaluating Models Class 10 AI (Code 417) | Accuracy, Precision, Recall & F1 Score Explained бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Evaluating Models Class 10 AI (Code 417) | Accuracy, Precision, Recall & F1 Score Explained или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Evaluating Models Class 10 AI (Code 417) | Accuracy, Precision, Recall & F1 Score Explained бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Evaluating Models Class 10 AI (Code 417) | Accuracy, Precision, Recall & F1 Score Explained

Evaluating Models Class 10 AI Code 417 made crystal clear—learn how AI models are tested, trusted, and improved using accuracy, precision, recall & F1 score in one powerful session.

This lecture takes you inside Evaluating Models – Unit 3 (Part B, 10 Marks) of CBSE Class 10 Artificial Intelligence (AI 417), where models stop guessing and start proving themselves. If you’ve ever wondered how we decide whether an AI model is good or dangerous, this is where the truth lives.

Using board-aligned language, real-life analogies, and step-by-step activities, you’ll learn why accuracy alone can mislead, how confusion matrices expose model behaviour, and when precision, recall, or F1 score becomes the right choice—especially for unbalanced datasets like medical diagnosis or fraud detection.

This is not decorative theory. This is exam-ready clarity, grounded in CBSE expectations and extended toward real-world AI thinking—perfect for Class 9–12 students, competitive learners, and anyone stepping into BCA, MCA, BTech, or MTech foundations.

➡️ Notes & PDFs: www.SinghClasses.in
➡️ Join my WhatsApp Group: chat.whatsapp.com/LW4dBrAHIaGAXwK1ni2MPH

🎯 What You’ll Learn
✔️ Why model evaluation is the backbone of trustworthy AI
✔️ Train–Test Split: concept, need & overfitting prevention
✔️ Accuracy vs Error — and why accuracy can lie
✔️ Hands-on accuracy calculation activity (House Price Prediction)
✔️ Confusion Matrix explained from scratch (TP, FP, FN, TN)
✔️ When to use Precision (False Positives matter)
✔️ When to use Recall (False Negatives matter)
✔️ F1 Score as a balance metric for unbalanced datasets
✔️ Ethical concerns in model evaluation: bias, transparency & accountability
✔️ Board-level numericals + real-life AI scenarios

👨‍🏫 About the Instructor – Rohit Singh
PGT Computer Science | 10+ years shaping board results, not just lectures
Specialist in Class 10–12 CBSE
📌 Artificial Intelligence (417) | Computer Science (085) | Informatics Practices (065)
Classes Available:
📍 Offline Coaching: Sant Nagar & Hudson Lane
📞 Academic Counselling & Enrolments: 8800873871

👍 Call to Action
If this video helped you see beyond formulas, Like, Share, and Subscribe.
Drop your doubts in the comments—I read them, I reply, and I teach through them.

💬 Question for You (Comment Below 👇)
👉 In real-life AI systems like medical diagnosis or fraud detection, which metric matters more—Precision or Recall, and why?
Your answer tells me how deeply you understand AI.

⏱️ Timestamps – Study Smart, Not Long
00:00 – Introduction to Evaluating Models (Unit 3 Overview)
01:08 – Why Model Evaluation Matters in Artificial Intelligence

Methods of Model Evaluation (Overview)
03:13 – Train–Test Split: Concept & Need
05:46 – Accuracy vs Error
08:01 – Activity 1: Accuracy Calculation (House Price Prediction)
09:45 – Evaluation Metrics for Classification
10:42 – Confusion Matrix in Detail with Activity
22:00 – Accuracy: Concept with Example
24:47 – Precision: Concept with Example
26:50 – Recall: Concept with Example
28:04 – F1 Score: Concept with Example
30:07 – Ethical Concerns in Model Evaluation
30:30 – Outro – Subscribe, Like & Share

🔖 Hashtags
#CBSEClass10AI #AI417 #EvaluatingModels
#MachineLearningClass10 #ModelEvaluation
#PrecisionRecall #F1Score #ConfusionMatrix
#BoardExamAI #RohitSingh #SinghClasses

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]