Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Extracting Full Names with NE Chunks in Python

  • vlogize
  • 2025-08-20
  • 0
Extracting Full Names with NE Chunks in Python
  • ok logo

Скачать Extracting Full Names with NE Chunks in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Extracting Full Names with NE Chunks in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Extracting Full Names with NE Chunks in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Extracting Full Names with NE Chunks in Python

Discover how to effectively extract `full names` of individuals and organizations from sentences using NE Chunks in Python. This guide includes detailed code explanations and troubleshooting tips.
---
This video is based on the question https://stackoverflow.com/q/64997336/ asked by the user 'Eulie' ( https://stackoverflow.com/u/14659489/ ) and on the answer https://stackoverflow.com/a/64998123/ provided by the user 'Tim' ( https://stackoverflow.com/u/3339758/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Extracting full names with ne_chunks

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Extracting Full Names with NE Chunks in Python: A Guide for Beginners

Are you looking to extract full names of people and organizations from text using Python? If yes, you're in the right place! In this guide, we'll address a common issue faced by beginners while trying to achieve named entity recognition (NER) with the help of Natural Language Toolkit (NLTK) in Python.

The Problem

As a new programmer, you may encounter difficulties when attempting to extract full names from sentences. For instance, a beginner shared the following code snippet:

[[See Video to Reveal this Text or Code Snippet]]

Despite this effort, the code was returning only a part of the name "Toni" instead of the full name "Toni Morrison". This left our coder puzzled and searching for answers.

The Solution

After analyzing the code, a more structured approach was recommended to correctly extract the full names. Here’s an improved version of the original code along with insights that can help clarify the extraction process.

Understanding the Code

Library Imports:

[[See Video to Reveal this Text or Code Snippet]]

Start by importing necessary functions from the NLTK library, which includes tokenization, part-of-speech tagging, and chunking.

Defining the Function:

[[See Video to Reveal this Text or Code Snippet]]

Here, we define a function get_continuous_chunks that processes text for named entity recognition.

Iterating Through Chunks:

[[See Video to Reveal this Text or Code Snippet]]

By iterating through chunked, the code collects entities identified as Tree types. If multiple proper nouns appear consecutively, they are grouped together.

Running the Function:

[[See Video to Reveal this Text or Code Snippet]]

This part of the code executes the function with a sample sentence, ideally returning: ['Toni Morrison', 'Random House', 'New York City'].

Sample Output

When executing the revised code, the output should now correctly display:

[[See Video to Reveal this Text or Code Snippet]]

Additional Tips

Debugging: Utilize print statements liberally while stepping through your code. Print the type and values of the items being iterated to visualize the logical flow and identify where adjustments may be necessary.

Variable Naming: Be mindful of naming conventions. While the initial variable encompassed continuous chunks, the term contiguous is notably more descriptive of the operation taking place.

Conclusion

Extracting full names from text can initially pose challenges, but with a methodical approach and the right tools, it becomes manageable. By following this guide, you can enhance your understanding of NLTK’s capabilities and improve your overall coding skills in NLP tasks.

Remember, practice makes perfect! Keep experimenting with the code and refining your extraction methods for better results.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]