Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Data-driven subgrid-scale modeling: Stability, extrapolation, & interpretation ▸ Pedram Hassanzadeh

  • Kavli Institute for Theoretical Physics
  • 2021-11-01
  • 211
Data-driven subgrid-scale modeling: Stability, extrapolation, & interpretation ▸ Pedram Hassanzadeh
kavli institute for theoretical physicskitpuc santa barbaraucsbphysicsphysics lectureEarth systemobservationsmodeling dataclimate scientistscommunicationpublicclimatephysicalchemicalbiologicalBig dataalgorithmsMachine Learningclimate systemscausal questionsnew theoriesexperimentsmodel parameterizationsdata-drivenexchanging toolscomputational sciencesclimate change
  • ok logo

Скачать Data-driven subgrid-scale modeling: Stability, extrapolation, & interpretation ▸ Pedram Hassanzadeh бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Data-driven subgrid-scale modeling: Stability, extrapolation, & interpretation ▸ Pedram Hassanzadeh или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Data-driven subgrid-scale modeling: Stability, extrapolation, & interpretation ▸ Pedram Hassanzadeh бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Data-driven subgrid-scale modeling: Stability, extrapolation, & interpretation ▸ Pedram Hassanzadeh

Recorded as part of the Machine Learning for Climate KITP conference

The theoretical understanding of the Earth system has fundamentally advanced in recent decades in parallel to an exponential increase of observations and modeling data. However, climate scientists cannot meet the challenge of informing society about changes that may occur in the future at regional and local scales because many two-way, multi-scale processes that encompass the physical chemical and biological realms continue to elude us. Big data and the associated algorithms (Machine Learning) provide the opportunity to learn about quantities related to the climate systems in ways and with an amount of detail that were infeasible only a few years ago. The opportunity for descriptive inference creates the chance for climate scientists to ask causal questions and create new theories or validate old ones. Furthermore, when paired with modeling experiments or robust research in model parameterizations, “big data” can provide data-driven answers to vexing questions.

This conference will set the stage for exchanging tools and ideas and will help identify key problems where consistent progress is achievable through collaborative efforts. The theme of the conference will extend more broadly than the Physics focus of the main program, in order to elicit input from a wide range of experts across the earth system and computational sciences who are involved in the climate change problem. Given the level of interdisciplinarity and exchange that we aim for and expect, this conference will summarize current understanding and open questions, and will set the stage for achieving the aims of the associated KITP program.

Conference Coordinators: Henk A. Dijkstra, Claire Monteleoni, and Laure Zanna

__________________________________

Learn more at: https://www.kitp.ucsb.edu

Follow @KITP_UCSB for updates on Twitter:   / kitp_ucsb  

__________________________________

The position of the KITP is that ownership and copyright of all online material -- slides, text, audio, video, and podcasts -- belongs to the author. KITP is providing dissemination for these materials but does not claim ownership. Any person citing these materials for scholarly purposes should provide an appropriate scholarly reference.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]