Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering Pandas: How to Merge Multiple Rows Based on Two Columns

  • vlogize
  • 2025-05-27
  • 0
Mastering Pandas: How to Merge Multiple Rows Based on Two Columns
How to merge multiple rows based on two columns in pandaspythonpandasdataframepandas groupby
  • ok logo

Скачать Mastering Pandas: How to Merge Multiple Rows Based on Two Columns бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering Pandas: How to Merge Multiple Rows Based on Two Columns или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering Pandas: How to Merge Multiple Rows Based on Two Columns бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering Pandas: How to Merge Multiple Rows Based on Two Columns

Learn how to efficiently merge multiple rows in a Pandas DataFrame based on two columns with this detailed step-by-step guide.
---
This video is based on the question https://stackoverflow.com/q/68901003/ asked by the user 'Travis Huang' ( https://stackoverflow.com/u/16737575/ ) and on the answer https://stackoverflow.com/a/68901300/ provided by the user 'Psidom' ( https://stackoverflow.com/u/4983450/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to merge multiple rows based on two columns in pandas

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Merging Multiple Rows Based on Two Columns in Pandas

When working with Pandas, data often comes in row formats that require specific modifications for analysis. One common task is merging rows based on certain conditions involving multiple columns. In this post, we will explore how to tackle the problem of merging rows where the end time of one row matches the start time of another row based on two columns.

Understanding the Problem

Consider a DataFrame with the following structure:

[[See Video to Reveal this Text or Code Snippet]]

In this scenario, our objective is to merge the rows so that if the End time of one row is equal to the Start time of the subsequent row, they should be combined into a single interval. The desired output would be:

[[See Video to Reveal this Text or Code Snippet]]

The Solution Approach

To solve this problem efficiently, we can follow a systematic approach using the groupby function in Pandas. Here’s a step-by-step breakdown of how this can be achieved:

Step 1: Sort the DataFrame

First, we need to ensure that our DataFrame is sorted by the Start time. This step is crucial as it prepares the data for merging.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Use GroupBy and Apply

Next, we will utilize the groupby function along with apply to group based on unique combinations of Name1 and Name2. Within each group, we'll look for intervals that can be merged.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Explanation of the Logic

Cumulative Maximum End: The expression g.End.cummax().shift() computes the cumulative maximum of the End values shifted by one position. This is used to compare the end of one interval to the start of the next interval.

Cumulative Sum for Grouping: The cumsum().agg() is creating a group number for each interval in the DataFrame as we parse through sorted data. When the cumulative maximum of End is less than the Start of the next row, it indicates the start of a new group.

Aggregation of Start and End: Finally, we aggregate the data using the min and max functions to determine the start and end points of the merged intervals.

Conclusion

Using the above method, you can efficiently merge rows in a Pandas DataFrame based on conditions across multiple columns. This approach minimizes the need for explicit loops and leverages the powerful group operations in Pandas.

Whether you're cleaning up time-series data or preparing datasets for analysis, mastering techniques like this one ensures your data is both accurate and well-structured. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]