Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Coefficient of t^24 in the expansion of 〖(1+t^2)〗^12(1+t^12) (1+t^24) is 12C6 +2 b) 12C6 +1

  • MP Alam | Physics for JEE & NEET
  • 2020-08-22
  • 734
Coefficient of t^24 in the expansion of 〖(1+t^2)〗^12(1+t^12) (1+t^24) is  12C6 +2   b) 12C6 +1
binomial theorem class 11 vedantubinomial theorem class 11thbinomial theorem class 11 unacademy jeebinomial theorem class 11 one shotbinomial theorem class 11 jeebinomial theorem class 11 ncertbinomial theorem class 11 arvind academybinomial theorem class 11 by alakh pandeybinomial theorem class 11 general and middle termbinomial theorem class 11 rs aggarwalbinomial theorem class 11 khan academybinomial theorem class 11 by cbse class
  • ok logo

Скачать Coefficient of t^24 in the expansion of 〖(1+t^2)〗^12(1+t^12) (1+t^24) is 12C6 +2 b) 12C6 +1 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Coefficient of t^24 in the expansion of 〖(1+t^2)〗^12(1+t^12) (1+t^24) is 12C6 +2 b) 12C6 +1 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Coefficient of t^24 in the expansion of 〖(1+t^2)〗^12(1+t^12) (1+t^24) is 12C6 +2 b) 12C6 +1 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Coefficient of t^24 in the expansion of 〖(1+t^2)〗^12(1+t^12) (1+t^24) is 12C6 +2 b) 12C6 +1

   • Binomial Theorem Class 11  
Coefficient of t^24 in the expansion of 〖(1+t^2)〗^12(1+t^12) (1+t^24) is
12C6 +2 b) 12C6 +1 c) 12C6 d) none


In binomial theorem class 11, chapter 8 provides the information regarding the introduction and basic definitions for binomial theorem in a detailed way. To score good marks in binomial theorem class 11 concepts, go through the given problems here. Solve all class 11 Maths chapter 8 problems in the book by referring the examples to clear your concepts on binomial theorem.

Binomial Theorem Class 11 Topics
The topics and sub-topics covered in binomial theorem class 11 are:

Introduction
Binomial theorem for positive integral indices
Binomial theorem for any positive integer n
Special Cases
General and Middle Term
Binomial Theorem Class 11 Notes
Properties of Binomial Theorem for Positive Integer

(i) Total number of terms in the expansion of (x + a)n is (n + 1).
(ii) The sum of the indices of x and a in each term is n.

(iii) The above expansion is also true when x and a are complex numbers.

(iv) The coefficient of terms equidistant from the beginning and the end are equal. These coefficients are known as the binomial coefficients and

nCr = nCn – r, r = 0,1,2,…,n.

(v) General term in the expansion of (x + c)n is given by

Tr + 1 = nCrxn – r ar.

Binomial Expression: A binomial expression is an algebraic expression which contains two dissimilar terms. Ex: a + b, a3 + b3, etc.

Binomial Theorem: Let n ∈ N,x,y,∈ R then

nΣr=0 nCr xn – r · yr + nCr xn – r · yr + …………. + nCn-1 x · yn – 1 + nCn · yn

i.e.(x + y)n = nΣr=0 nCr xn – r · yr
some other useful expansions:

(x + y)n + (x−y)n = 2[C0 xn + C2 xn-1 y2 + C4 xn-4 y4 + …]
(x + y)n – (x−y)n = 2[C1 xn-1 y + C3 xn-3 y3 + C5 xn-5 y5 + …]
(1 + x)n = nΣr-0 nCr . xr = [C0 + C1 x + C2 x2 + … Cn xn]
(1+x)n + (1 − x)n = 2[C0 + C2 x2+C4 x4 + …]
(1+x)n − (1−x)n = 2[C1 x + C3 x3 + C5 x5 + …]
The number of terms in the expansion of (x + a)n + (x−a)n are (n+2)/2 if “n” is even or (n+1)/2 if “n” is odd.
The number of terms in the expansion of (x + a)n − (x−a)n are (n/2) if “n” is even or (n+1)/2 if “n” is odd.
Properties of Binomial Coefficients
Binomial coefficients refer to the integers which are coefficients in the binomial theorem. Some of the most important properties of binomial coefficients are:

C0 + C1 + C2 + … + Cn = 2n
C0 + C2 + C4 + … = C1 + C3 + C5 + … = 2n-1
C0 – C1 + C2 – C3 + … +(−1)n . nCn = 0
nC1 + 2.nC2 + 3.nC3 + … + n.nCn = n.2n-1
C1 − 2C2 + 3C3 − 4C4 + … +(−1)n-1 Cn = 0 for n greater than 1
C02 + C12 + C22 + …Cn2 = [(2n)!/ (n!)2]
General Term in binomial expansion:
We have (x + y)n = nC0 xn + nC1 xn-1 . y + nC2 xn-2 . y2 + … + nCn yn

General Term = Tr+1 = nCr xn-r . yr

General Term in (1 + x)n is nCr xr
In the binomial expansion of (x + y)n , the rth term from end is (n – r + 2)th .
Illustration: Find the number of terms in (1 + 2x +x2)50

Sol:

(1 + 2x + x2)50 = [(1 + x)2]50 = (1 + x)100

The number of terms = (100 + 1) = 101

Illustration: Find the fourth term from the end in the expansion of (2x – 1/x2)10

Sol:

Required term =T10 – 4 + 2 = T8 = 10C7 (2x)3 (−1/x2)7 = −960x-11

Middle Term(S) in the expansion of (x+y) n.n
If n is even then (n/2 + 1) Term is the middle Term.
If n is odd then [(n+1)/2]th and [(n+3)/2)th terms are the middle terms.
Illustration: Find the middle term of (1 −3x + 3x2 – x3)2n

Sol:

(1 − 3x + 3x2 – x3)2n = [(1 − x)3]2n = (1 − x)6n

Middle Term = [(6n/2) + 1] term = 6nC3n (−x)3n

Determining a Particular Term:

In the expansion of(axp + b/xq)n the coefficient of xm is the coefficient of Tr+1 where r = [(np−m)/(p+q)]
In the expansion of (x + a)n, Tr+1/Tr = (n – r + 1)/r . a/x
Independent Term
The term Independent of in the expansion of [axp + (b/xq)]n is

Tr+1 = nCr an-r br, where r = (np/p+q) (integer)

Illustration: Find the independent term of x in (x+1/x)6

Sol:

r = [6(1)/1+1] = 3

The independent term is 6C3 = 20
Numerically greatest term in the expansion of (1+x)n:
If [(n+1)|x|]/[|x|+1] = P, is a positive integer then Pth term and (P+1)th terms are numerically greatest terms in the expansion of (1+x)n
If[(n+1)|x|]/[|x|+1] = P + F, where P is a positive integer and 0 less F less 1 then (P+1)th term is numerically greatest term in the expansion of (1+x)n.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]