Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Parse HTML Data with Beautiful Soup: Targeting data-row Attributes

  • vlogize
  • 2025-10-09
  • 0
How to Parse HTML Data with Beautiful Soup: Targeting data-row Attributes
Parsing data with beautiful soup targeting data- attributebeautifulsoup
  • ok logo

Скачать How to Parse HTML Data with Beautiful Soup: Targeting data-row Attributes бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Parse HTML Data with Beautiful Soup: Targeting data-row Attributes или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Parse HTML Data with Beautiful Soup: Targeting data-row Attributes бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Parse HTML Data with Beautiful Soup: Targeting data-row Attributes

Learn how to effectively retrieve HTML elements with `data-row` attributes using Beautiful Soup in Python.
---
This video is based on the question https://stackoverflow.com/q/64687680/ asked by the user 'Justin' ( https://stackoverflow.com/u/3131132/ ) and on the answer https://stackoverflow.com/a/64687853/ provided by the user 'Andrej Kesely' ( https://stackoverflow.com/u/10035985/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Parsing data with beautiful soup, targeting data- attribute

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Parsing HTML Data with Beautiful Soup: Targeting Data Attributes

When working with web data, you may encounter situations where specific elements spread across a website's HTML are critical to your project or analysis. One such case is retrieving elements with certain data- attributes using Python's Beautiful Soup library. In this guide, we'll explore how to effectively parse data that contains the data-row attribute within HTML tables.

The Problem

Imagine you are working with a webpage that includes data structured in elements like this:

[[See Video to Reveal this Text or Code Snippet]]

You successfully managed to fetch these elements using the following code:

[[See Video to Reveal this Text or Code Snippet]]

This code works perfectly and retrieves the desired elements without an issue. However, you are now trying to access another set of elements that look similar to this:

[[See Video to Reveal this Text or Code Snippet]]

You assumed that modifying your code slightly would allow you to capture these data-row attributes too. However, you ran into a problem—the code didn't return any results! Despite various attempts, such as using True as a string or the boolean value, there were no outputs to be found.

The Solution: Adjusting Your Approach

Understanding Dynamic Elements

The key to successfully retrieving these elements lies in understanding that the data-row attributes are often generated dynamically by JavaScript. This means that when you load the HTML content of the page, certain elements may not be included in the initial page load that Beautiful Soup retrieves.

Using Selectors for Better Accuracy

To work around this, you can target the entire table related to your data by its ID and access its rows directly. Here's the adjusted code:

[[See Video to Reveal this Text or Code Snippet]]

Breaking It Down

Step 1: We retrieve the webpage using requests and parse it with BeautifulSoup.

Step 2: We use the select method to specifically target the <tr> elements within the table that has the ID stats.

Step 3: For each row, we extract the text from all <td> and <th> elements, using get_text(strip=True) to clean the output.

Step 4: Finally, we print the results in a formatted manner.

Expected Output

Running the above code will yield output similar to this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By adjusting your approach to utilize the table structure rather than trying to isolate specific data-row attributes directly, you can effectively parse dynamic HTML content using Beautiful Soup. This strategy not only enhances data retrieval accuracy but also opens doors to analyzing comprehensive datasets present within HTML tables.

With these insights, you should be well-equipped to tackle similar web scraping tasks. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]