Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering Custom Transformers in Python: How In-place Dataframe Modifications Work

  • vlogize
  • 2025-09-20
  • 1
Mastering Custom Transformers in Python: How In-place Dataframe Modifications Work
Custom Transformer using BaseEstimator TransformerMixinpythonpandasscikit learn
  • ok logo

Скачать Mastering Custom Transformers in Python: How In-place Dataframe Modifications Work бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering Custom Transformers in Python: How In-place Dataframe Modifications Work или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering Custom Transformers in Python: How In-place Dataframe Modifications Work бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering Custom Transformers in Python: How In-place Dataframe Modifications Work

Discover how to implement custom transformers in Python using scikit-learn and understand the in-place modifications of DataFrames.
---
This video is based on the question https://stackoverflow.com/q/62585623/ asked by the user 'NewDev' ( https://stackoverflow.com/u/12869856/ ) and on the answer https://stackoverflow.com/a/62598951/ provided by the user 'Hugolmn' ( https://stackoverflow.com/u/13765085/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Custom Transformer using BaseEstimator, TransformerMixin

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering Custom Transformers in Python: How In-place Dataframe Modifications Work

When working with machine learning frameworks in Python such as scikit-learn, you might often find yourself tasked with customizing your data transformations. One common question that arises is: Is the transformation on X_train done in place? In this guide, we’ll unravel this concept by diving into custom transformers and understanding how dataframes behave during these transformations.

The Question at Hand

Imagine you're implementing a custom transformer to create new attributes from existing ones in a dataset. You have written the following transformer:

[[See Video to Reveal this Text or Code Snippet]]

Your concern is whether the transformation performed in the transform method modifies the original X_train dataframe in place. Despite not storing the return value, you've noticed that X_train appears modified after calling the transform method. Let’s break down how this works.

Understanding In-place Modifications

What Does "In-place" Mean?

In programming, an operation is considered to be "in place" if it modifies the existing data structure directly rather than producing a new one. When you modify a data structure in place, you save memory and can manipulate data efficiently.

Behavior of DataFrames in Pandas

The key to understanding the behavior you're observing lies in how Pandas DataFrames manage their data. When you pass a DataFrame to a function and modify it, you are actually working with a reference to the original DataFrame.

Example of In-place Modification

Let’s illustrate this with a simplified example:

[[See Video to Reveal this Text or Code Snippet]]

The output will be:

[[See Video to Reveal this Text or Code Snippet]]

As you can see, the values of A and B have been modified in the original df DataFrame.

Working with DataFrame Views

The behavior is the same even when you're working with a view of a DataFrame. For instance:

[[See Video to Reveal this Text or Code Snippet]]

This would also yield the original df DataFrame with its values modified, demonstrating that you are indeed altering the content in place.

Preventing In-place Modifications

If you'd like to avoid unintentional modifications to your original DataFrame, you can create a copy before transforming it. Here's how you can do it:

[[See Video to Reveal this Text or Code Snippet]]

In this case, any changes made by the transform method will only affect new_df, leaving the original df intact.

Conclusion

In summary, transformations performed in Pandas DataFrames within custom transformers are done in place unless you explicitly create a copy. This behavior is essential for memory management and performance but requires careful consideration to avoid unintended side effects. When using custom transformers in your machine learning pipeline, always be mindful of how you’re modifying your data.

By mastering these concepts of Custom Transformers, you harness greater control over your data transformations, ultimately leading to better machine-learning models.

Feel free to share your thoughts or any questions you have regarding custom transformers in the comments below!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]