Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Cut a Pandas DataFrame Based on Unique Values per Column Pandas DataFrame Unique Values

  • vlogize
  • 2025-05-27
  • 0
How to Cut a Pandas DataFrame Based on Unique Values per Column Pandas DataFrame Unique Values
Cut Pandas dataframe based on unique values per columnpythonpandas
  • ok logo

Скачать How to Cut a Pandas DataFrame Based on Unique Values per Column Pandas DataFrame Unique Values бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Cut a Pandas DataFrame Based on Unique Values per Column Pandas DataFrame Unique Values или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Cut a Pandas DataFrame Based on Unique Values per Column Pandas DataFrame Unique Values бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Cut a Pandas DataFrame Based on Unique Values per Column Pandas DataFrame Unique Values

Learn how to split a Pandas DataFrame into separate DataFrames based on unique values in a specific column, preserving the order of the data.
---
This video is based on the question https://stackoverflow.com/q/65898645/ asked by the user 'Jerzy' ( https://stackoverflow.com/u/8147500/ ) and on the answer https://stackoverflow.com/a/65899094/ provided by the user 'Chris' ( https://stackoverflow.com/u/7093741/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Cut Pandas dataframe based on unique values per column

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Cut a Pandas DataFrame Based on Unique Values per Column

When dealing with data in Python, specifically in data science and analysis, you often encounter scenarios that require reshaping or splitting your data to make it more useful or easier to analyze. One such common requirement is to cut a Pandas DataFrame into separate DataFrames based on unique values per column. This guide will guide you through the process step by step.

The Problem

Imagine you have a DataFrame that contains duplicated values in a column. For instance, consider the following DataFrame:

[[See Video to Reveal this Text or Code Snippet]]

This DataFrame looks like this:

[[See Video to Reveal this Text or Code Snippet]]

Your goal is to split this DataFrame into multiple DataFrames, each representing a unique combination of values in the block column. For example, you would like to achieve this:

Desired Output

The desired split for the example DataFrame should look like:

DataFrame 1:

[[See Video to Reveal this Text or Code Snippet]]

DataFrame 2:

[[See Video to Reveal this Text or Code Snippet]]

Solution Overview

To tackle this problem, we can make use of Python's Pandas library along with itertools. We will follow these steps:

Group the DataFrame by the target column (block).

Create combinations of rows corresponding to each group.

Concatenate these combinations to form new DataFrames.

Step-by-Step Implementation

Here's how to implement the solution using Python code:

[[See Video to Reveal this Text or Code Snippet]]

Code Explanation:

Grouping: We utilize df.groupby("block") to iterate through each unique value of the block column.

Row Extraction: We extract the rows for each group into a list using list comprehension.

Combining Rows: With the help of itertools.product, we create combinations of rows from these grouped DataFrames.

Concatenation: Finally, the combinations are concatenated using pd.concat and transposed to form a DataFrame that maintains the original order.

Outputs

After executing the code, you would get separate DataFrames printed out as follows:

Output for the first example:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Now you have a method to split Pandas DataFrame into multiple DataFrames based on unique values in a specific column while preserving the order of the data. This approach is useful for data analysis where you want to analyze each unique combination of column values separately.

Feel free to use and modify this approach for your DataFrame splitting needs. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]