Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Slice a 2D NumPy Array: Removing Outer Rows and Columns with numpy

  • vlogize
  • 2025-05-25
  • 1
How to Slice a 2D NumPy Array: Removing Outer Rows and Columns with numpy
Slicing 2D NumPy Array removing first and last row and columnpythonarraysnumpyslice
  • ok logo

Скачать How to Slice a 2D NumPy Array: Removing Outer Rows and Columns with numpy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Slice a 2D NumPy Array: Removing Outer Rows and Columns with numpy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Slice a 2D NumPy Array: Removing Outer Rows and Columns with numpy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Slice a 2D NumPy Array: Removing Outer Rows and Columns with numpy

Learn how to efficiently slice a 2D NumPy array by removing the first and last rows and columns. This guide provides clear steps and examples for handling your data effectively.
---
This video is based on the question https://stackoverflow.com/q/70573661/ asked by the user 'zishaf' ( https://stackoverflow.com/u/17827558/ ) and on the answer https://stackoverflow.com/a/70573681/ provided by the user 'Mark' ( https://stackoverflow.com/u/3874623/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Slicing 2D NumPy Array, removing first and last row and column

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Slicing 2D NumPy Arrays: Removing Outer Rows and Columns

When working with 2D NumPy arrays, you might sometimes find yourself needing to focus on the inner values of the array, effectively eliminating the borders. This is especially useful when dealing with grid-like structures where the perimeter is filled with irrelevant data (like walls in a game map). In this guide, we’ll tackle a common problem: how to correctly slice a 2D NumPy array to remove the first and last rows and columns.

The Problem

Imagine you have a 2D NumPy array representing a map filled with tiles. The outer layer of this array is filled with "wall" values, which you want to exclude when processing the inner part of the map. You might attempt to slice the array using:

[[See Video to Reveal this Text or Code Snippet]]

However, this often leads to unexpected results when the shape of the resultant array does not match your expectations. For instance, a 100x70 map is resulting in an array with the shape (96, 70) instead of the desired (98, 68).

Understanding the Slicing Syntax

In NumPy, the syntax for slicing is quite powerful but can be a bit tricky if not understood correctly. The most crucial part to remember is:

Use commas to separate slices for rows and columns.

When you slice it as map.tiles[1:-1][1:-1], you apply the second slice [1:-1] on the result of the first slice, which doesn’t act as you would expect in a 2D array.

Correct Slicing Method

To correctly remove the first and last rows as well as the first and last columns, you should incorporate both indices within the same brackets, like this:

[[See Video to Reveal this Text or Code Snippet]]

Example Code

Let’s illustrate this with an example:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

Creating an Array: Initially, we create a 5x5 array filled with ones to represent our map structure.

Slicing the Array: Using a[1:-1, 1:-1], we effectively set the inner part of the array (excluding the first and last rows/columns) to zero.

Checking Shape: For your specific case of a 100x70 map, slicing it will give you a new shape of (98, 68), as expected!

Summary of Key Points

Always use commas to specify row and column slices in a 2D array.

The result of the slicing should be checked using the .shape method to ensure it meets your expectations.

This method is applicable across various 2D array structures, making it a versatile tool in your data manipulation toolkit.

By following these tips and methods, you can effectively handle inner values of 2D NumPy arrays, paving the way for cleaner and more efficient data processing.

Ask your questions in the comments below or share your experiences with slicing NumPy arrays!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]