Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Get Updated Records by Comparing Two DataFrames in PySpark

  • vlogize
  • 2025-04-04
  • 7
How to Get Updated Records by Comparing Two DataFrames in PySpark
How to get updated or new records by comparing two dataframe in pysparkapache sparkpyspark
  • ok logo

Скачать How to Get Updated Records by Comparing Two DataFrames in PySpark бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Get Updated Records by Comparing Two DataFrames in PySpark или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Get Updated Records by Comparing Two DataFrames in PySpark бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Get Updated Records by Comparing Two DataFrames in PySpark

A comprehensive guide on updating existing records and adding new records in PySpark by comparing two DataFrames. Learn how to effectively manage your data!
---
This video is based on the question https://stackoverflow.com/q/69192581/ asked by the user 'greenking' ( https://stackoverflow.com/u/11873674/ ) and on the answer https://stackoverflow.com/a/69192762/ provided by the user 'Kafels' ( https://stackoverflow.com/u/6080276/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to get updated or new records by comparing two dataframe in pyspark

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Get Updated Records by Comparing Two DataFrames in PySpark

When working with data in PySpark, it's common to encounter scenarios where you need to compare two DataFrames. For instance, you may have existing records in one DataFrame that need to be updated or enriched with new data from another DataFrame. In this guide, we will explore a practical use case and provide a step-by-step solution.

The Problem Statement

Consider two DataFrames:

df2: Contains existing records in your database.

df3: Includes new or updated records that need to be integrated into df2.

Here's a quick look at the two DataFrames:

Existing Records (df2)

[[See Video to Reveal this Text or Code Snippet]]

New/Updated Records (df3)

[[See Video to Reveal this Text or Code Snippet]]

Key Requirements

For NAME=PPan, we need to replace the entire row in df2 since the balance and salary have changed.

For NAME=Cal, we need to add a new row to df2.

For NAME=Liza, the row remains unchanged in df2.

Our desired output would be:

[[See Video to Reveal this Text or Code Snippet]]

The Solution

Step 1: Join the DataFrames

The first step in our solution is to perform a full outer join on the two DataFrames. This allows us to keep all unmatched records from both DataFrames and helps us identify which records need to be updated or added.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Select and Coalesce Columns

Next, we need to choose the columns we want in our final DataFrame. To do this, we will use the COALESCE function. COALESCE returns the first non-null value from the specified columns, which helps us update existing records while inserting new ones where necessary.

Here’s how the selection looks:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Show the Result

Finally, to present our results neatly, we sort the final DataFrame by the balance and show the output:

[[See Video to Reveal this Text or Code Snippet]]

Result Display

The output will display the combined DataFrame as follows:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In this guide, we walked through how to effectively compare two DataFrames in PySpark, allowing you to update existing records and add new records as needed. By using a combination of joins and the COALESCE function, managing data changes becomes a straightforward process.

Now, whether you're maintaining databases or processing large datasets, you'll have the tools you need to keep your PySpark applications efficient and up to date!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]