Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Solving the Knapsack Problem with Constraints using Python's CP-SAT Solver

  • vlogize
  • 2025-05-27
  • 25
Solving the Knapsack Problem with Constraints using Python's CP-SAT Solver
Knapsack problem with a total item limit in Pythonpythonmathematical optimizationor toolsknapsack problemcp sat
  • ok logo

Скачать Solving the Knapsack Problem with Constraints using Python's CP-SAT Solver бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Solving the Knapsack Problem with Constraints using Python's CP-SAT Solver или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Solving the Knapsack Problem with Constraints using Python's CP-SAT Solver бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Solving the Knapsack Problem with Constraints using Python's CP-SAT Solver

Master the art of solving the `Knapsack Problem` in Python with baked-in constraints using the `ortools` library. Learn how to maximize values while staying within limits!
---
This video is based on the question https://stackoverflow.com/q/69353707/ asked by the user 'KDS' ( https://stackoverflow.com/u/6178155/ ) and on the answer https://stackoverflow.com/a/69354228/ provided by the user 'sascha' ( https://stackoverflow.com/u/2320035/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Knapsack problem with a total item limit in Python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Navigating the Knapsack Problem with Constraints

When faced with resource allocation issues, one may come across a classic challenge known as the Knapsack Problem. This problem seeks the optimal selection of items to maximize value without overspending a defined budget or exceeding a certain limit. In this guide, we address a customized version of the Knapsack Problem: Given a budget of $20 and a desire for six unique beers, how do we maximize the review scores while adhering to specific type constraints?

The Problem Unpacked

Imagine a scenario where you want to concoct the perfect mix as per the following requirements:

Budget: Spend less than $20 total.

Fixed Quantity: Buy exactly six beers.

Type Constraints:

At least two must be Lagers.

At least one must be a Stout.

At least one must be an Amber.

Uniqueness: All six beers need to be unique.

Example Beer Data

Here's a simplified data set for the beers available:

Beer NameTypePriceScoreBeer1Lager3.504.1Beer2Porter4.904.5Beer3IPA3.704.0Beer4Stout3.204.2Beer5Amber3.803.9Beer6Stout2.702.9Beer7IPA2.503.2Beer8Pilsner3.104.0Beer9Amber3.004.1Beer10Porter2.803.3Beer11IPA3.704.0Beer12Lager3.204.2Beer13Amber3.303.5Beer14Stout2.902.8Beer15Lager3.204.2The Solution Approach

To solve this problem effectively without brute force searching through all possible combinations, we can utilize the Google OR-Tools CP-SAT solver, which is designed for constraint programming tasks. Below, we’ll detail each step of the process in code.

Step 1: Setup Data

First, we’ll initialize our problem parameters including the beer list, budget, and beer count.

Step 2: Preprocess the Data

Ensure that the prices and scores are suitable for our solver since it handles integer values.

Step 3: Create a Model

Using the CP-SAT solver, define the model, variables, and constraints.

Step 4: Solve the Model

Use the solver to determine the optimal selection of beers that meets all outlined criteria.

Here's how to implement this in Python:

[[See Video to Reveal this Text or Code Snippet]]

Output Interpretation

Upon successfully executing the model, the optimal selection of beers is printed based on constraints ensuring you maximize your score while sticking to defined rules.

Conclusion

By utilizing the cp-sat solver from OR-Tools, you can solve complex knapsack scenarios efficiently. This laid-back exploration demonstrates how Python can tackle even multifaceted challenges with elegant, concise solutions - far superior to brute force methods. For any complex allocation problem, leveraging this solver will make your tasks much simpler and more efficient.

With this guide, we hope you feel empowered to navigate your unique challenges with similar approaches. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]