Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Extracting Points from a Plane using Numpy in Python

  • vlogize
  • 2025-10-06
  • 0
Extracting Points from a Plane using Numpy in Python
finding all the points that belong to a plane using pythonpythonnumpynumpy slicingopen3d
  • ok logo

Скачать Extracting Points from a Plane using Numpy in Python бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Extracting Points from a Plane using Numpy in Python или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Extracting Points from a Plane using Numpy in Python бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Extracting Points from a Plane using Numpy in Python

Learn how to efficiently extract points that belong to a specific plane in 3D space using `Numpy` in Python. This guide offers a step-by-step explanation to optimize your code for better performance.
---
This video is based on the question https://stackoverflow.com/q/63986930/ asked by the user 'yihao ren' ( https://stackoverflow.com/u/8822279/ ) and on the answer https://stackoverflow.com/a/63987271/ provided by the user 'anon01' ( https://stackoverflow.com/u/5032941/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: finding all the points that belong to a plane using python

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Extracting Points from a Plane in Python

In the realm of 3D modeling and data analysis, one may often find the need to identify points that lie on a specific plane defined by the equation Ax + By + Cz + D = 0. If you're using Python, you might initially resort to looping through your dataset point-by-point to find matching coordinates. However, this method can be inefficient, especially with larger datasets. In this guide, we will explore how to use Numpy for a more efficient solution to extract points on a given plane quickly.

The Challenge

Imagine you have a dataset represented as an mx3 array, where each row corresponds to the x, y, z coordinates of a point in 3D space. You want to identify all those points that satisfy the plane equation. The traditional approach involves iterating over each point in your array, which can become cumbersome as your dataset scales. Here is a basic example of how a loop might look:

[[See Video to Reveal this Text or Code Snippet]]

While this method works, there’s a better and faster way utilizing Numpy features like vectorization. Let's dive into it!

The Solution: Vectorization with Numpy

Vectorization is a powerful technique in Numpy that allows operations on entire arrays without the need for explicit loops. This not only simplifies the code but also significantly enhances performance. Here’s how to implement this technique for extracting points that lie on a plane:

Step 1: Generating Random Points

Start by generating a dataset of random points. For demonstration purposes, we will create a million points with integer coordinates:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Defining the Plane

To define the plane, we need coefficients A, B, C, and calculate D based on one of the points in our dataset. Here is the process:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Extract Points on the Plane

Now, we can efficiently extract all points that lie on the specified plane:

[[See Video to Reveal this Text or Code Snippet]]

Key Insights

Numpy's Dot Product: The method dot performs matrix multiplication, which is crucial for transforming our plane equation into a vectorized form.

Filtering with Boolean Indexing: The expression p.dot(ABC) + D == 0 creates a boolean array that labels which points satisfy the plane equation.

Performance: This method drastically reduces computation time, particularly as your dataset size grows.

Conclusion

In this guide, we have discussed how to effortlessly extract all points belonging to a specific plane using Numpy in Python. By leveraging vectorization and boolean indexing, you can achieve much faster performance compared to traditional looping methods. This efficient approach is a great addition to your data processing toolkit in Python, especially when dealing with large datasets.

By employing these techniques, you're not only enhancing your programming skills but also ensuring that your applications run smoothly even as they scale.

Feel free to experiment with different values for A, B, and C and observe how the points change in relation to the defined plane!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]