Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Using machine learning to identify adverse events from scientific literature

  • Elsevier | Life Sciences
  • 2020-11-27
  • 407
Using machine learning to identify adverse events from scientific literature
PatentsReaxysNLPmachine learningchemistrychemical information extractionEmbase
  • ok logo

Скачать Using machine learning to identify adverse events from scientific literature бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Using machine learning to identify adverse events from scientific literature или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Using machine learning to identify adverse events from scientific literature бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Using machine learning to identify adverse events from scientific literature

In commercial research and development projects, public disclosure of new chemical compounds and reactions often takes place in patents. Only a small proportion of these compounds are published in journals, usually a few years after the patent. Patent authorities make available the patents but do not provide systematic continuous chemical annotations. Different text-mining approaches exist to extract chemical information from patents but less attention has been given to relevancy of a compound in a patent. Relevancy of a compound to a patent is based on the patent’s context. A relevant compound plays a major role within a patent. Identification of relevant compounds reduces the size of the extracted data and improves the usefulness of patent resources (e.g. supports identifying the main compounds). Annotators of databases like Reaxys only annotate relevant compounds.
Using the advanced technologies in Artificial intelligence (AI), Machine learning (ML) and Natural language processing (NLP), we have developed models to overcome these limitations. Through shared evaluation campaign we have also invited academic and industrial teams to further develop, improve and contribute to the domain of patent information extraction.

The webinar will discuss:
The challenges of patent mining in the chemical domain
Chemical information extraction. From relevant document to relevant section to relevant information.
How to create a quality training set for machine learning in Chemistry
The ChEMU shared task for name entity and event extraction

About speaker:

Saber Akhondi obtained his MSc degree in Bioinformatics and Systems Biology from Chalmers University of Technology, Sweden. In 2011 he started as a PhD student within the biosemantics group in Erasmus Medical Center Rotterdam. He currently works at Elsevier as a Principle NLP Scientist where he applies NLP and machine learning techniques to extract information useful for large commercial and research communities.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]