Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Deploying a Deep Learning Network on NVIDIA Jetson Using GPU Coder - MATLAB Tutorial

  • MATLAB
  • 2017-10-20
  • 5901
Deploying a Deep Learning Network on NVIDIA Jetson Using GPU Coder - MATLAB Tutorial
MATLABSimulinkMathWorks5588115004001
  • ok logo

Скачать Deploying a Deep Learning Network on NVIDIA Jetson Using GPU Coder - MATLAB Tutorial бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Deploying a Deep Learning Network on NVIDIA Jetson Using GPU Coder - MATLAB Tutorial или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Deploying a Deep Learning Network on NVIDIA Jetson Using GPU Coder - MATLAB Tutorial бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Deploying a Deep Learning Network on NVIDIA Jetson Using GPU Coder - MATLAB Tutorial

With GPU Coder, you can deploy a deep neural network in MATLAB® to NVIDIA® Jetson™ board. You can either create a deep neural network and train it from scratch, or start with a pretrained network and retrain it through transfer learning. To learn more about this process, view the available resources on training a deep learning network in MATLAB.

CUDA® code can be generated from the neural network with GPU Coder™, along with the pre-processing and post-processing code that constitutes your MATLAB algorithm for an embedded vision application, for example. The generated CUDA code contains the binary weight and bias files for the various layers in the network.

You can then deploy your application, along with the deep learning network for inference, onto an embedded platform, such as NVIDIA Jetson TX1 board, by exporting the generated code to the target and building it on the target. Alternatively, you can also cross compile for the target on the host desktop.
Learn how to generate CUDA code for NVIDIA GPUs: https://goo.gl/SM86S3
Free MATLAB Trial: https://goo.gl/yXuXnS
Learn more about MATLAB: https://goo.gl/8QV7ZZ
Learn more about Simulink: https://goo.gl/nqnbLe

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]