Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Split Array Columns into Smaller Chunks in PySpark

  • vlogize
  • 2025-04-04
  • 0
Efficiently Split Array Columns into Smaller Chunks in PySpark
PySpark - Split Array Column into smaller chunkspyspark
  • ok logo

Скачать Efficiently Split Array Columns into Smaller Chunks in PySpark бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Split Array Columns into Smaller Chunks in PySpark или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Split Array Columns into Smaller Chunks in PySpark бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Split Array Columns into Smaller Chunks in PySpark

Learn how to split array columns in PySpark into smaller chunks without using UDFs. Discover methods using transform, filter, and slice functions for effective data manipulation.
---
This video is based on the question https://stackoverflow.com/q/69324262/ asked by the user 'gael' ( https://stackoverflow.com/u/12705555/ ) and on the answer https://stackoverflow.com/a/69336038/ provided by the user 'anky' ( https://stackoverflow.com/u/9840637/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: PySpark - Split Array Column into smaller chunks

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Split Array Columns into Smaller Chunks in PySpark

In the realm of data processing, often we encounter arrays or lists stored within our datasets. A common requirement is to split these arrays into smaller chunks for better manageability and analysis. In this guide, we’ll explore how to split an array column into smaller chunks in PySpark without the use of User Defined Functions (UDFs).

The Problem: Splitting Array Columns

Consider you have a dataset containing an array column, arrayCol, which looks something like this:

[[See Video to Reveal this Text or Code Snippet]]

If we want to split this array into smaller chunks of a specified size (let's say 2), the desired output would be:

[[See Video to Reveal this Text or Code Snippet]]

In this post, we will provide a detailed solution to achieve this in a clear and efficient manner.

The Solution: Using PySpark Functions

To tackle this problem without relying on UDFs, we can take advantage of PySpark’s built-in functions: transform, filter, and slice. Let’s break down the steps involved in creating this solution.

Step 1: Import the Necessary Functions

First, we need to import the required functions from PySpark's SQL module.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Define the Chunk Size

For this example, we will set the maximum size for our chunks. Here, we will set it to 2.

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Create the New Column

We will create a new column in our DataFrame that holds the array split into smaller chunks. The transformation will consist of filtering and slicing the original array as follows:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of the Code

transform() Function: This function applies a specified operation (in this case, a conditional split) to each element of the array. The parameters x and i represent the element and its index respectively.

Conditional Split: The code checks if the current index (i) is divisible by n. If it is, we slice the array starting from the current index for n sized chunks.

slice() Function: This is used to extract portions of the array.

filter() Function: After transformation, we ensure to eliminate any null values (which arise when the condition is not met) by applying the filter.

NewCol: The result is stored in a new column named NewCol, where our original array is split into manageable pieces.

Output Example

When the above code is executed on a DataFrame containing the original array [1, 2, 3, 4, 5], you would get the output:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

In conclusion, splitting array columns in PySpark can enhance data handling and manipulation. The approach discussed here utilizes PySpark's core functionality without the complexity of UDFs, making it a clean and efficient solution.

Now, you can easily manage large datasets where arrays are frequent, thereby improving your data processing and analysis capabilities.

Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]