Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Fine-tune & Chat with LLMs Locally: MLX + Ollama + Open WebUI Tutorial (Apple Silicon) 🚀

  • APC Mastery Path
  • 2025-02-10
  • 3593
Fine-tune & Chat with LLMs Locally: MLX + Ollama + Open WebUI Tutorial (Apple Silicon) 🚀
  • ok logo

Скачать Fine-tune & Chat with LLMs Locally: MLX + Ollama + Open WebUI Tutorial (Apple Silicon) 🚀 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Fine-tune & Chat with LLMs Locally: MLX + Ollama + Open WebUI Tutorial (Apple Silicon) 🚀 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Fine-tune & Chat with LLMs Locally: MLX + Ollama + Open WebUI Tutorial (Apple Silicon) 🚀 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Fine-tune & Chat with LLMs Locally: MLX + Ollama + Open WebUI Tutorial (Apple Silicon) 🚀

Looking to leverage your Mac's powerful Apple Silicon for AI development? You're in the right place! In this comprehensive, step-by-step tutorial, I'll show you how to fine-tune Large Language Models (LLMs) using the cutting-edge MLX framework - Apple's breakthrough for native AI development on Mac.

Whether you're a seasoned ML engineer or just starting your AI journey, this tutorial breaks down the entire process: from setting up your development environment to deploying a production-ready model. You'll learn how to fine-tune models using LoRA, convert them to the efficient GGUF format, and deploy them using popular tools like Ollama and Open WebUI.

What makes this tutorial special:
• Native Apple Silicon optimization - no more CPU/GPU compatibility issues
• Complete workflow from setup to deployment
• Real-world examples and practical applications
• Performance optimization tips and best practices
• Detailed explanations of each step

⏱️ Full Tutorial Breakdown:
00:23 Main Agenda
00:58 Github Repository Display

🔧 Part I - Setting up the coding environment
01:56 Proposed Fine-tuning Process
03:04 VS Code Installation
03:19 Python Installation
03:44 Home Brew Installation
04:03 Git Installation
04:29 Ollama Installation & Usage
05:47 Open WebUI Installation & Usage
07:10 Further Installations in Jupyter Notebook

📊 Part II
09:53 Create/Import Data for Fine-tuning

🤖 Part III - Train, Test & Validate the LLM
12:59 Step 3.1 - Variables/Arguments Definition
14:26 Step 3.2 & 3.3 - Huggingface Model Download & Conversion to MLX
16:05 Step 3.4 - LoRA Fine-tuning under the MLX Framework
18:31 Step 3.5 - Testing the adapters performance
19:28 Step 3.6 - Model Validation and Inferencing

⚡️ Part IV - Fuse adapters with LLM and convert to GGUF
22:18 Step 4.1 - Fuse adapters to trained model and saving locally
24:08 Step 4.2 - Testing and Inferencing the fused model through terminal
25:28 Step 4.3 - Testing and Inferencing the fused model through Python API
26:50 Step 4.4 - Exporting the fused model to Huggingface
27:32 Step 4.5 - Converting the fused model to GGUF format (online & locally)
29:48 Step 4.6 - Create a model file for the GGUF model
31:28 Step 4.6 - Export the GGUF model to ollama and inferencing
33:01 Step 4.6 - Inferencing the ollama GGUF model in Open WebUI

33:49 Recap
34:10 Outro

🎯 What You'll Learn:
• Complete environment setup on macOS
• Creating fine-tuning datasets
• Training with LoRA adapters in MLX
• Fusing adapters with base models
• Converting models to GGUF format
• Deploying on Ollama and Open WebUI

🏗️ Advance Your Construction Career with APC Mastery Path!
Transform your career with our specialized mentoring and teaching packages for RICS APC candidates. Learn how to implement AI and data analytics in construction from industry experts. Visit www.apcmasterypath.co.uk to learn more about our teaching and mentoring packages!

💡 Special Focus:
Learn how these automation techniques can specifically benefit RICS APC candidates in their chartership journey, while gaining practical skills in construction data analytics that set you apart in the industry.

🔔 Don’t forget to like, subscribe, and hit the notification bell to stay updated with the latest tutorials and insights into AI, APC exam preparation, and LLM development!

🔗 General Links & Resources:
⚫OurGithub Repo used in this video : https://github.com/MoAshour93/MLX_Fin...
⚫ Construction Data Analytics Github Repository: https://github.com/MoAshour93/Constru...
⚫My personal Github page: https://github.com/MoAshour93
⚫Our Website: www.apcmasterypath.co.uk
⚫All APC Mastery Path Blogposts: https://www.apcmasterypath.co.uk/blog...
⚫Personal Linkedin Page:   / mohamed-ashour-0727  
⚫APC Mastery Path Linkedin Page:   / apc-mastery-path  

#MLX #MachineLearning #AppleSilicon #AI #LLM #FineTuning #ArtificialIntelligence #MacOS #DeepLearning #Construction #RICSAPC #DataAnalytics #TechTutorial #Python #Ollama #OpenWebUI

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]