Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Efficiently Compute Cosine Similarity of a Vector Against a Matrix Using Numpy

  • vlogize
  • 2025-09-29
  • 0
Efficiently Compute Cosine Similarity of a Vector Against a Matrix Using Numpy
How to find cosine similarity of one vector vs matrixpythonnumpycosine similarity
  • ok logo

Скачать Efficiently Compute Cosine Similarity of a Vector Against a Matrix Using Numpy бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Efficiently Compute Cosine Similarity of a Vector Against a Matrix Using Numpy или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Efficiently Compute Cosine Similarity of a Vector Against a Matrix Using Numpy бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Efficiently Compute Cosine Similarity of a Vector Against a Matrix Using Numpy

Discover a fast method to calculate `cosine similarity` between a vector and multiple matrix columns in Python with Numpy.
---
This video is based on the question https://stackoverflow.com/q/63690068/ asked by the user 'Talha Anwar' ( https://stackoverflow.com/u/11170350/ ) and on the answer https://stackoverflow.com/a/63690261/ provided by the user 'Divakar' ( https://stackoverflow.com/u/3293881/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to find cosine similarity of one vector vs matrix

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Streamlining Cosine Similarity Calculations with Numpy

When working with large datasets in machine learning and data analysis, efficiency is key. One common challenge is calculating the cosine similarity between a single vector and all columns of a matrix. If you're using a TF-IDF matrix and finding your calculations are sluggish, you might be wondering: How can I speed this process up?

In this guide, we'll walk through how to compute cosine similarity efficiently using Python's Numpy library. We’ll start with our initial approach and then explore a more optimized solution.

Understanding the Problem

Cosine similarity is a measure of similarity between two non-zero vectors of an inner product space. It is defined by the cosine of the angle between them, yielding a value between -1 and 1. In the case of a TF-IDF matrix shaped (149, 1001), computing the cosine similarity of the last column against all other columns can be computationally expensive if done naively with loops.

Here’s a brief look at our initial, inefficient method:

[[See Video to Reveal this Text or Code Snippet]]

While this code works, it can be quite slow, particularly for larger matrices, due to the repeated calculations.

The Optimized Solution

Instead of relying on a for-loop, we can utilize Numpy's powerful vectorization features and matrix operations to achieve that goal more efficiently. Below is the optimized method, which uses Numpy’s matrix multiplication capabilities and avoids explicit loops altogether.

Using matrix-multiplication

We can express the cosine similarity calculation in a more compact and performant way:

[[See Video to Reveal this Text or Code Snippet]]

Explanation of Steps:

p1 represents the dot product of the last column against all other columns, mimicking the looping process but in a single operation.

p2 collects the norms of each column and the norm of the last column, facilitating our final calculation.

out1 gives us the desired cosine similarities in one go, without the overhead of loops.

Verifying Our Implementation

For verification, we can compare this optimized solution against the slower looping method using a simple test:

[[See Video to Reveal this Text or Code Snippet]]

Performance Comparison

After applying both methods, timing the calculations will clearly showcase the performance improvement:

[[See Video to Reveal this Text or Code Snippet]]

Further Enhancements with einsum

For even greater performance, you can enhance the norm calculation using np.einsum():

[[See Video to Reveal this Text or Code Snippet]]

This approach can lead to an improved performance statistic, resulting in a 30x speedup over the original looping method!

Conclusion

Efficient computation of cosine similarity not only improves execution time but can also make a significant difference when working with large datasets. Utilizing NumPy’s vectorized operations allows us to handle such tasks swiftly and easily.

For those diving deeper into data analysis or machine learning, mastering these optimization techniques is invaluable. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]