Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Why Does Python Error Log Function Result in No Rows Written?

  • vlogize
  • 2025-10-03
  • 0
Why Does Python Error Log Function Result in No Rows Written?
Why does Python error log function result in no rows written?pythonpandas
  • ok logo

Скачать Why Does Python Error Log Function Result in No Rows Written? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Why Does Python Error Log Function Result in No Rows Written? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Why Does Python Error Log Function Result in No Rows Written? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Why Does Python Error Log Function Result in No Rows Written?

Discover why you are not seeing rows written in your Python error log function and learn the correct approach to fix this issue with clear examples and explanations.
---
This video is based on the question https://stackoverflow.com/q/63064172/ asked by the user 'OverflowingTheGlass' ( https://stackoverflow.com/u/7668467/ ) and on the answer https://stackoverflow.com/a/63064330/ provided by the user 'Barmar' ( https://stackoverflow.com/u/1491895/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Why does Python error log function result in no rows written?

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Understanding the Issue with Python’s DataFrame Error Logging

When working with data in Python, particularly using the pandas library, you might encounter some unexpected behavior related to data manipulation. One common problem arises when trying to log errors in a DataFrame, but no rows appear in your error log. This guide will help you understand why this happens and how you can effectively solve the issue.

The Problem: No Rows in Error Log

Consider a scenario where you have a DataFrame containing project details, and you want to create an error log DataFrame to capture any issues that arise during processing. Here's a breakdown of your setup:

DataFrame of Projects: You start with a DataFrame listing multiple projects.

[[See Video to Reveal this Text or Code Snippet]]

Empty Error Log: You create an empty DataFrame to store errors.

[[See Video to Reveal this Text or Code Snippet]]

Error Logging Function: You define a function that should append an error message to the error log.

[[See Video to Reveal this Text or Code Snippet]]

Function Call: You call the function in a loop to log multiple errors.

[[See Video to Reveal this Text or Code Snippet]]

Despite the setup running without throwing errors, you find that error_log remains empty. Why is that?

The Root Cause: Local Variable Assignment

The problem lies in how DataFrames are manipulated in pandas. The method df.append() creates a new DataFrame rather than modifying the existing DataFrame in place. This means that when you call df = df.append(...), you are merely changing the local variable df within the function, without affecting the original error_log DataFrame outside the function.

Here’s What Happens:

The log_error function takes error_log as input and appends the new row.

However, since append() returns a new DataFrame, the original error_log object remains unchanged.

In essence, your function never actually updates the error_log DataFrame that you are trying to modify.

The Solution: Return and Reassign

To ensure that the rows are being added correctly, you need to modify the function to return the updated DataFrame. Here’s how you can implement this:

Revised Error Logging Function

Change your log_error function to return the modified DataFrame after appending a new row:

[[See Video to Reveal this Text or Code Snippet]]

Updating the Loop

Next, modify your for loop to reassign the result of the function call back to error_log:

[[See Video to Reveal this Text or Code Snippet]]

By implementing this change, you will find that your error_log DataFrame will now contain the error messages as intended.

Conclusion

In conclusion, if you're ever perplexed by why your error logging function isn't writing rows to a DataFrame in Python, remember that pandas functions like append() do not modify DataFrames in place. Instead, they create a new object. Always return the updated DataFrame from your function and reassign it when you call the function in your loop. Following these practices will make your Python programming experience smoother and eliminate similar issues in the future.

Feel free to implement this solution in your applications, and happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]