Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть tinyML Research Symposium 2021 Poster: Deep Learning for Compute in Memory

  • EDGE AI FOUNDATION
  • 2021-04-25
  • 231
tinyML Research Symposium 2021 Poster: Deep Learning for Compute in Memory
tinyml
  • ok logo

Скачать tinyML Research Symposium 2021 Poster: Deep Learning for Compute in Memory бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно tinyML Research Symposium 2021 Poster: Deep Learning for Compute in Memory или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку tinyML Research Symposium 2021 Poster: Deep Learning for Compute in Memory бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео tinyML Research Symposium 2021 Poster: Deep Learning for Compute in Memory

tinyML Research Symposium 2021 https://www.tinyml.org/event/research...
Deep Learning for Compute in Memory

Compute in Memory (CIM) accelerators for neural networks promise large efficiency gains, allowing for deep learning applications on extremely resource-constrained devices. Compared to classical digital processors, computations on CIM accelerators are subject to a variety of noise sources such as process variations, thermal effects, quantization, and more. In this work, we show how fundamental hardware design choices influence the predictive performance of neural networks and how training these models to be hardware-aware can make them more robust for CIM deployment. Through various experiments, we make the trade-offs between energy efficiency and model capacity explicit and showcase the benefits of taking a systems view on CIM accelerator and neural network training co-design.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]