Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть A unique solution, No solution, or Infinitely many solutions | Ax=b

  • Mulkek
  • 2019-12-31
  • 305440
A unique solution, No solution, or Infinitely many solutions | Ax=b
a unique solutionno solutioninfinitely many solutionsAx=bor Infinitely many solutions | Ax=bone solutioninfinite solutionsmany solutionssolving systems of equationsunique solutionunique solution matricesone solution no solutionno solution and infinite solutionone solution no solution infinite solutionsrrefsolutionsolutionssystemsalgebrasystems of equationseliminationtypes of solutionrow operationsexamplespractice problemslinear algebra
  • ok logo

Скачать A unique solution, No solution, or Infinitely many solutions | Ax=b бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно A unique solution, No solution, or Infinitely many solutions | Ax=b или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку A unique solution, No solution, or Infinitely many solutions | Ax=b бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео A unique solution, No solution, or Infinitely many solutions | Ax=b

❖ A linear system Ax=b has one of three possible solutions:
1. The system has a unique solution which means only one solution.
2. The system has no solution.
3. The system has infinitely many solutions.

So, we have explained how to determine if a system of equations has the three types of solution which are a unique solution, no solution, or infinitely many solutions. Also, this algebra video tutorial explains how to solve systems of equations by elimination with examples and practice problems.

❖ In this video, the three augmented matrices represent the final step for any augmented matrix by using a Gauss Jordan Elimination method.

The Gauss Jordan elimination method is a process used to solve a system of linear equations Ax=b by converting the system into an augmented matrix and using Elementary Row Operations to convert a matrix into a Reduced Row Echelon Form ( RREF ).

Another method to solve a linear system Ax=b is a Gaussian elimination method.

❖ Elementary Row Operations
There are three types of elementary matrices, which correspond to three types of row operations:

1. Row switching
A row within the matrix can be switched with another row.

2. Row multiplication
Each element in a row can be multiplied by a non-zero constant.

3. Row addition
A row can be replaced by the sum of that row and a multiple of another row.


0:00 ❖ Types of solution of Ax=b
7:30 1. a unique solution (only one solution)
9:25 2. no solution
10:50 3. infinitely many solutions


For more videos about this, you can find them in this playlist (Linear Algebra):
   • Linear Algebra  

My Website:
https://www.Mulkek.com

Subscribe to My Channel to check out more videos:
   / mulkek  

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]