Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Transform Non-Stationary Time Series to Stationary: Python Tutorial for Algorithmic Trading Finance

  • TheDataScientist
  • 2024-05-28
  • 151
Transform Non-Stationary Time Series to Stationary: Python Tutorial for Algorithmic Trading  Finance
  • ok logo

Скачать Transform Non-Stationary Time Series to Stationary: Python Tutorial for Algorithmic Trading Finance бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Transform Non-Stationary Time Series to Stationary: Python Tutorial for Algorithmic Trading Finance или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Transform Non-Stationary Time Series to Stationary: Python Tutorial for Algorithmic Trading Finance бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Transform Non-Stationary Time Series to Stationary: Python Tutorial for Algorithmic Trading Finance

Correcting Non - Stationary Time Series Data With Python

The video begins with a review of previous discussions on determining if a given time series is stationary. It mentions using tests like the Augmented Dickey-Fuller (ADF) test. The focus then shifts to methods for making a non-stationary time series stationary through various transformations.

The video explores methods to make a non-stationary time series into a stationary one, primarily focusing on financial data analysis. It starts by reviewing the use of tests such as the Augmented Dickey-Fuller (ADF) test to check stationarity. The presenter then discusses various transformations to achieve stationarity:

Deflation: Using the Consumer Price Index (CPI) as a reference, the presenter explains deflating data to account for inflation, which helps in normalizing the time series.
Log Transformation: The application of the natural logarithm to data is suggested as a method to reduce non-linear trends to linear, simplifying the analysis.
Differencing: The video discusses using differences between consecutive observations to remove trends and cycles, focusing on the calculation of changes rather than absolute values.

These methods are intended to make the data more suitable for analysis, recognizing that not all techniques will work universally and their effectiveness depends on the specific dataset.

Please feel free to visit my website as well
https://thedatascientist.me/

0:00 Introduction
0:25 Ways to convert Non Stationary Data to Stationary
1:39 How To Get Gold Data From Nasdaq Website with API Key
4:34 How To Apply Deflation on Inflation Data in Consumer Price Index
5:30 How To Apply Log on Non Stationary Data
6:57 How To Test Autocorrelation
7:36 How To Apply Differencing in Non Stationary Data


How To Test For Stationary In Data    • Unlocking Time Series:Master Stationarity ...  

CONTACT: [email protected]
#timeseriesanalysis #pythonalgotrading #finance


Time Series Correction Python, Convert Non-Stationary to Stationary, Python Algo Trading Tips, Financial Time Series with Python, Advanced Time Series Python, Python Time Series Manipulation, Python Finance Techniques, Time Series Adjustment Python, Python Statistical Tests, Time Series Data Python, Python Time Series Forecasting, Finance Data Science Python, Python Scripts for Trading, Time Series Analysis Techniques, Python Financial Algorithms, Algorithmic Trading Python Tutorial, Financial Engineering Python, Quantitative Finance Python, Python for Quantitative Analysis, Trading Algorithms in Python

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]