How to Make Solar System Model With Thermocol Step By Step

Описание к видео How to Make Solar System Model With Thermocol Step By Step

Hello friends, here I show you how to make a Solar system model step by step with Thermocol and other objects. please see carefully and make it easily.it is help full for school students to make their projects. Thank you.
Materials Required :Thermocol, glue, knife, scale, scissor, soft acrylic color, etc.

If you want, I make other projects like this then you comment me in comment box.

SOLAR SYSTEM
Solar system, assemblage consisting of the Sun—an average star in the Milky Way Galaxy—and those bodies orbiting around it: 8 (formerly 9) planets with about 170 known planetary satellites (moons); countless asteroids, some with their own satellites; comets and other icy bodies; and vast reaches of highly tenuous gas and dust known as the interplanetary medium.
The Sun, Moon, and brightest planets were visible to the naked eyes of ancient astronomers, and their observations and calculations of the movements of these bodies gave rise to the science of astronomy. Today the amount of information on the motions, properties, and compositions of the planets and smaller bodies has grown to immense proportions, and the range of observational instruments has extended far beyond the solar system to other galaxies and the edge of the known universe. Yet the solar system and its immediate outer boundary still represent the limit of our physical reach, and they remain the core of our theoretical understanding of the cosmos as well. Earth-launched space probes and landers have gathered data on planets, moons, asteroids, and other bodies, and this data has been added to the measurements collected with telescopes and other instruments from below and above Earth’s atmosphere and to the information extracted from meteorites and from Moon rocks returned by astronauts. All this information is scrutinized in attempts to understand in detail the origin and evolution of the solar system—a goal toward which astronomers continue to make great strides.

COMPOSITION OF THE SOLAR SYSTEM
Located at the centre of the solar system and influencing the motion of all the other bodies through its gravitational force is the Sun, which in itself contains more than 99 percent of the mass of the system. The planets, in order of their distance outward from the Sun, are Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. Four planets—Jupiter through Neptune—have ring systems, and all but Mercury and Venus have one or more moons. Pluto had been officially listed among the planets since it was discovered in 1930 orbiting beyond Neptune, but in 1992 an icy object was discovered still farther from the Sun than Pluto. Many other such discoveries followed, including an object named Eris that appears to be at least as large as Pluto. It became apparent that Pluto was simply one of the larger members of this new group of objects, collectively known as the Kuiper belt. Accordingly, in August 2006 the International Astronomical Union (IAU), the organization charged by the scientific community with classifying astronomical objects, voted to revoke Pluto’s planetary status and place it under a new classification called dwarf planet. For a discussion of that action and of the definition of planet approved by the IAU, see planet.

ORIGIN OF THE SOLAR SYSTEM
As the amount of data on the planets, moons, comets, and asteroids has grown, so too have the problems faced by astronomers in forming theories of the origin of the solar system. In the ancient world, theories of the origin of Earth and the objects seen in the sky were certainly much less constrained by fact. Indeed, a scientific approach to the origin of the solar system became possible only after the publication of Isaac Newton’s laws of motion and gravitation in 1687. Even after this breakthrough, many years elapsed while scientists struggled with applications of Newton’s laws to explain the apparent motions of planets, moons, comets, and asteroids. In 1734 Swedish philosopher Emanuel Swedenborg proposed a model for the solar system’s origin in which a shell of material around the Sun broke into small pieces that formed the planets. This idea of the solar system forming out of an original nebula was extended by the German philosopher Immanuel Kant in 1755.

Email: [email protected]

Комментарии

Информация по комментариям в разработке