Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Chapter 8: Sorting in Linear Time | Introduction to Algorithms (Podcast Summary)

  • Last Minute Lecture
  • 2025-03-30
  • 111
Chapter 8: Sorting in Linear Time | Introduction to Algorithms (Podcast Summary)
sorting algorithmscounting sortradix sortbucket sortlinear time sortingstable sortingCLRSchapter 8 summaryYoung and FreedmanAP CScomparison sortingalgorithm analysis
  • ok logo

Скачать Chapter 8: Sorting in Linear Time | Introduction to Algorithms (Podcast Summary) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Chapter 8: Sorting in Linear Time | Introduction to Algorithms (Podcast Summary) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Chapter 8: Sorting in Linear Time | Introduction to Algorithms (Podcast Summary) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Chapter 8: Sorting in Linear Time | Introduction to Algorithms (Podcast Summary)

Chapter 8 explores sorting algorithms that can run in linear time, breaking past the traditional Omega(n log n) lower bound for comparison-based sorting by making assumptions about the input. It introduces three non-comparison sorts — counting sort, radix sort, and bucket sort — and explains how each leverages structure in the input domain to achieve fast performance.

✅ Comparison Sorts and Decision Tree Lower Bound
🔸 Merge sort, heapsort, and quicksort rely on element-to-element comparisons
🔸 Decision trees represent comparison operations in sorting
🔸 Tree with n! leaves (one per permutation) → height is Omega(n log n)
🔸 Theorem 8.1: Every comparison sort has worst-case time Omega(n log n)
🔸 Merge sort and heapsort are asymptotically optimal comparison sorts

✅ Counting Sort
🔸 Assumes input integers in range 0 to k
🔸 Uses auxiliary array C[0 to k] for counting occurrences
🔸 Steps:
 🔸 Count occurrences
 🔸 Accumulate counts
 🔸 Place elements in correct position in output array
🔸 Time complexity: Theta(n + k)
🔸 Stable sort — maintains original order of equal elements
🔸 Ideal when k = O(n)

✅ Radix Sort
🔸 Sorts d-digit numbers by processing one digit at a time
🔸 Uses stable sort (like counting sort) on each digit from least to most significant
🔸 Time complexity: Theta(d(n + k))
🔸 b-bit numbers treated as d = ceil(b/r) digits of r bits
🔸 When d is constant and k = O(n), radix sort runs in linear time
🔸 Choice of digit size r affects performance
🔸 Can outperform comparison-based sorts when input has fixed digit structure

✅ Bucket Sort
🔸 Assumes input drawn from uniform distribution over [0, 1)
🔸 Steps:
 🔸 Create n buckets
 🔸 Distribute input into buckets based on value
 🔸 Sort each bucket (typically with insertion sort)
 🔸 Concatenate buckets
🔸 Average-case time: O(n)
🔸 Worst-case time: Theta(n²) if all elements fall into one bucket
🔸 With well-distributed input, expected bucket sizes stay small
🔸 Using O(n log n) sort per bucket gives better worst-case performance

✅ Design Insights and Stability Considerations
🔸 Stability is important for radix sort (depends on stability in digit-level sorts)
🔸 Counting sort is stable by design
🔸 Bucket sort’s performance depends on input distribution
🔸 Non-comparison sorts are input-sensitive: they exploit domain structure

📚 Glossary of Key Terms
🔸 Comparison Sort – Sorts by comparing elements (e.g., quicksort, mergesort)
🔸 Counting Sort – Linear-time sort for integers in a limited range
🔸 Radix Sort – Digit-wise stable sort, efficient for fixed-length numbers
🔸 Bucket Sort – Uniform-distribution-based sort using multiple buckets
🔸 Decision Tree – Binary tree representing comparison operations
🔸 Omega(n log n) – Lower bound for comparison sorts
🔸 Stable Sort – Maintains relative order of equal elements
🔸 In-place Sorting – Uses only constant extra memory
🔸 Uniform Distribution – All values equally likely within range
🔸 Oblivious Compare-Exchange – Fixed sequence of comparisons, independent of data
🔸 0–1 Sorting Lemma – If an oblivious algorithm can sort 0s and 1s, it works for all inputs
🔸 Columnsort – Oblivious sorting algorithm using matrix transformations
🔸 k-Sorted Array – For all valid i, A[i] ≤ A[i+k]




Introduction to Algorithms Chapter 8 summary, counting sort vs radix sort vs bucket sort, linear time sorting algorithms CLRS, decision tree lower bound for sorting, stable sort radix example, bucket sort uniform input distribution, radix sort bit-level digit strategy, non-comparison sorting methods, AP computer science sorting, CLRS linear sorting overview 📘 Read full blog summaries for every chapter: https://lastminutelecture.blogspot.com/

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]