Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть 1000x Speed & 24-Bit Precision: Analogue RRAM Destroys the Digital Computing Bottleneck!

  • Bassanio So
  • 2025-10-25
  • 85
1000x Speed & 24-Bit Precision: Analogue RRAM Destroys the Digital Computing Bottleneck!
  • ok logo

Скачать 1000x Speed & 24-Bit Precision: Analogue RRAM Destroys the Digital Computing Bottleneck! бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно 1000x Speed & 24-Bit Precision: Analogue RRAM Destroys the Digital Computing Bottleneck! или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку 1000x Speed & 24-Bit Precision: Analogue RRAM Destroys the Digital Computing Bottleneck! бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео 1000x Speed & 24-Bit Precision: Analogue RRAM Destroys the Digital Computing Bottleneck!

(Video Opening Scene: Energetic, fast-paced music. Graphics displaying complex matrix equations and RRAM chip microstructures flash across the screen.)

*(Introduction Script)*

*Host:* Hey everyone, and welcome back to the channel!

Today, we're diving deep into a monumental challenge that has long plagued high-performance computing: **how to solve massive matrix equations both precisely and efficiently**. Whether you're training cutting-edge neural networks, running scientific simulations, or detecting signals in 6G wireless systems, solving equations like $Ax=b$ is absolutely central.

But traditional digital processors are hitting a wall. They suffer from computationally expensive complexity, often scaling as $O(N^3)$ for inversion, and they're bottlenecked by the separation of processor and memory in the conventional von Neumann architecture.

*(The Analogue Solution)*

Imagine if your memory could calculate at the speed of light! That's the promise of *Analogue Matrix Computing (AMC)* using Resistive Random-Access Memory, or RRAM. These RRAM arrays act as physical matrices, where the conductance of each device becomes an element of the matrix, allowing matrix-vector multiplication (MVM) in essentially one step.

*(The Breakthrough: Precision and Speed)*

For years, the central bottleneck of analogue computing was *precision**. But researchers have now described a **precise and scalable analogue matrix inversion solver* that overcomes this limit.

Their breakthrough approach uses an iterative algorithm combining analogue low-precision matrix inversion (LP-INV) and analogue high-precision matrix-vector multiplication (HP-MVM). This whole scheme is implemented using **3-bit RRAM chips fabricated in a foundry**.

By scaling this technique with the BlockAMC algorithm, they successfully solved inversion problems involving 16x16 real-valued matrices with an astonishing **24-bit fixed-point precision**—which is comparable to FP32 digital processors.

*(The Performance Edge)*

Now for the truly mind-blowing part: This analogue computing approach isn't just precise; it's blisteringly fast and efficient!

When applied to signal detection in complex, high-data systems like massive **MIMO wireless communications**, the HP-INV solver achieved performance identical to FP32 digital processors in just three iterations.

And benchmarking projections are revolutionary: This analogue RRAM solver could potentially offer *1,000 times higher throughput* and *100 times better energy efficiency* than state-of-the-art digital processors while maintaining the same level of precision.

*(Conclusion)*

This is the end of the precision bottleneck for analogue computing and a huge leap forward for data-intensive applications like 6G.

Stick around as we dive into the iterative refinement process, how they used bit-slicing to guarantee high precision, and what this means for the future of processing large-scale matrices! Don't forget to hit that subscribe button!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]