Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Introduction to Kafka Streams - CAKE Meetup Feb 2, 2017

  • Conversant Engineering
  • 2017-02-05
  • 461
Introduction to Kafka Streams - CAKE Meetup Feb 2, 2017
  • ok logo

Скачать Introduction to Kafka Streams - CAKE Meetup Feb 2, 2017 бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Introduction to Kafka Streams - CAKE Meetup Feb 2, 2017 или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Introduction to Kafka Streams - CAKE Meetup Feb 2, 2017 бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Introduction to Kafka Streams - CAKE Meetup Feb 2, 2017

Chicago Area Kafka Enthusiast (CAKE) Meetup @ Chicago offices of Conversant.

Speaker: Jeremy Custenborder, System Engineer, Confluent

Modern businesses have data at their core, and this data is changing continuously. How can we harness this torrent of information in real-time? The answer is stream processing, and the technology that has since become the core platform for streaming data is Apache Kafka. Among the thousands of companies that use Kafka to transform and reshape their industries are the likes of Netflix, Uber, PayPal, and AirBnB, but also established players such as Goldman Sachs, Cisco, and Oracle.

Unfortunately, today’s common architectures for real-time data processing at scale suffer from complexity: there are many technologies that need to be stitched and operated together, and each individual technology is often complex by itself. This has led to a strong discrepancy between how we, as engineers, would like to work vs. how we actually end up working in practice.
In this session we talk about how Apache Kafka helps you to radically simplify your data processing architectures. We cover how you can now build normal applications to serve your real-time processing needs — rather than building clusters or similar special-purpose infrastructure — and still benefit from properties such as high scalability, distributed computing, and fault-tolerance, which are typically associated exclusively with cluster technologies. Notably, we introduce Kafka’s Streams API, its abstractions for streams and tables, and its recently introduced Interactive Queries functionality. As we will see, Kafka makes such architectures equally viable for small, medium, and large scale use cases.

Speaker bio: Jeremy Custenborder is a Systems Engineer for Confluent, the company driving commercial Kafka support. He has consulted with big data systems since 2010 for various companies across the US. He currently lives in Austin, TX where he hides in the air conditioning for a large portion of the year.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]