Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Ahmad P. Tafti: Explainable AI in Medical Image Analysis: Lessons Learned in TJA Research

  • KUIS AI
  • 2022-05-29
  • 375
Ahmad P. Tafti: Explainable AI in Medical Image Analysis: Lessons Learned in TJA Research
kuisaitalkskuisaiTotalJoint Arthroplastyahmad p.taftiMedical Image Analysis
  • ok logo

Скачать Ahmad P. Tafti: Explainable AI in Medical Image Analysis: Lessons Learned in TJA Research бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Ahmad P. Tafti: Explainable AI in Medical Image Analysis: Lessons Learned in TJA Research или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Ahmad P. Tafti: Explainable AI in Medical Image Analysis: Lessons Learned in TJA Research бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Ahmad P. Tafti: Explainable AI in Medical Image Analysis: Lessons Learned in TJA Research

The talk given by Ahmad P. Tafti at KUIS AI Talks on May 12 in 2022.

Title: Explainable AI in Medical Image Analysis; Lessons Learned in Total
Joint Arthroplasty (TJA) Research

Abstract:
Orthopedic surgical procedures, and particularly total knee/hip arthroplasty (TKA/THA), are the most common and fastest growing surgeries in the United States. Almost 1.3 million TJA procedures occur on a yearly basis and more than 7 million Americans are currently living with artificial knee and/or hip joints. The widespread adoption of x-ray radiography and their availability at low cost, make them the principal method in assessing TJA and subtle TJA complications, such as osteolysis, implant loosening or infection over time, enabling surgeons to rule out complications and possible needs for revision surgeries. Rapid yet, with the growing number of TJA patients, the routine clinical and radiograph follow-up remain a daunting task for most orthopedic centers. It becomes an overwhelming amount of work, on a human scale, when we consider a radiologist or surgeon presented with the vast number of medical images daily. Smart computational strategies, such as explainable artificial intelligence and deep learning methods are thus required to analyze arthroplasty radiographs automatically and objectively, enabling both naive and experienced practitioners to perform radiographic follow-up with greater ease and speed, providing them with better explainability and interpretability in AI models. In this talk, we will be discussing the effectiveness of explainable AI methods to advance TJA research. We, together, will explore what explainable AI components do in TJA research and how.

Short Bio:
Dr. Tafti is an Assistant Professor of Computer Science at the University of Southern Maine, where he is leading the USM HexAI Research Laboratory. He is also an advisory board member in Stanford Deep Data Research Computing Center within the School of Medicine at Stanford University. Dr. Tafti received his PhD in computer science with an emphasis on artificial intelligence and 3D computer vision. He is passionate about AI and its applications in healthcare. Dr. Tafti is the 2021 SiiM Imaging Informatics Innovator awardee, Mayo Clinic Transform the Practice awardee, an NVIDIA GPU awardee, and GE Healthcare Honorable Mention awardee. To date, he has authored 45+ peer-reviewed publications. Dr. Tafti has organized numerous workshops and tutorials on intelligent health systems and has served on the program committee of 15+ conferences, symposiums, and journals in AI and Digital Health Sciences.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]