Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Properly Scale New Values in Python with StandardScaler

  • vlogize
  • 2025-03-28
  • 0
How to Properly Scale New Values in Python with StandardScaler
scalling new values after fit_transformpythonscikit learntransformdata fittingscalar
  • ok logo

Скачать How to Properly Scale New Values in Python with StandardScaler бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Properly Scale New Values in Python with StandardScaler или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Properly Scale New Values in Python with StandardScaler бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Properly Scale New Values in Python with StandardScaler

A guide on correctly transforming new data using `StandardScaler` from scikit-learn to avoid common errors and achieve accurate data scaling.
---
This video is based on the question https://stackoverflow.com/q/70910234/ asked by the user 'ProcolHarum' ( https://stackoverflow.com/u/11986167/ ) and on the answer https://stackoverflow.com/a/70910310/ provided by the user 'Simon Hawe' ( https://stackoverflow.com/u/14078758/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: scalling new values after fit_transform

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Properly Scale New Values in Python with StandardScaler

Scaling data is a crucial step in many machine learning projects. It ensures that your features are on a similar scale, which can lead to better model performance. In this guide, we’ll explore a common issue faced when scaling new values using the StandardScaler from the scikit-learn library in Python and how to resolve it effectively.

The Problem: Scaling New Features

Suppose you have an array of features and you normalize them using the StandardScaler. Here’s an example of your original features:

[[See Video to Reveal this Text or Code Snippet]]

After applying the fit_transform method, your scaled features appear as:

[[See Video to Reveal this Text or Code Snippet]]

However, when you attempt to scale a new data point using the transform method, you encounter an error:

[[See Video to Reveal this Text or Code Snippet]]

What Went Wrong?

This error usually occurs because of two main issues in the code:

Incorrect input format for the transform method.

The shape of the new data array is not aligned with what the StandardScaler expects.

The Solution: Correctly Prepare and Transform Your New Data

To avoid this error and properly scale your new features, follow these steps:

Step 1: Preparing the New Data

When passing your new feature values to the transform method, ensure that they are correctly reshaped. The reshaping should result in an array of shape (1, 2), which means that you have one sample with all the feature values in it.

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Applying the Transform Method

Now, use the transform method on the correctly shaped new_data array:

[[See Video to Reveal this Text or Code Snippet]]

Final Implemented Code

Here’s the complete code snippet that will work without errors:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By following the structured approach outlined above, you can seamlessly scale new feature values using StandardScaler without encountering errors. This simple reshaping step is crucial for ensuring that your model receives correctly formatted input for optimal performance. Scaling your data will help you achieve better results and make more accurate predictions in your machine learning projects.

With this understanding, you're now better equipped to handle data scaling in your projects. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]