Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Mastering MongoDB Aggregation for Nested Collection Data in Laravel

  • vlogize
  • 2025-03-27
  • 5
Mastering MongoDB Aggregation for Nested Collection Data in Laravel
MongoDB Aggregation in nested collection dataphpmongodbaggregation frameworklaravel 9php mongodb
  • ok logo

Скачать Mastering MongoDB Aggregation for Nested Collection Data in Laravel бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Mastering MongoDB Aggregation for Nested Collection Data in Laravel или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Mastering MongoDB Aggregation for Nested Collection Data in Laravel бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Mastering MongoDB Aggregation for Nested Collection Data in Laravel

Learn how to effectively use `MongoDB Aggregation` for nested collection data in Laravel. This guide walks you through a practical example step by step.
---
This video is based on the question https://stackoverflow.com/q/75501375/ asked by the user 'jarvis' ( https://stackoverflow.com/u/10519660/ ) and on the answer https://stackoverflow.com/a/75552980/ provided by the user 'jarvis' ( https://stackoverflow.com/u/10519660/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: MongoDB Aggregation in nested collection data

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Mastering MongoDB Aggregation for Nested Collection Data in Laravel

When working with MongoDB, especially in environments like Laravel, you may encounter the challenge of performing aggregations on nested collections. If you’ve ever had to sift through complex data structures for insights, you understand the importance of efficient data processing. This guide will provide you with detailed steps to successfully aggregate nested collection data in MongoDB.

Understanding the Problem

You're likely storing transactions for various stores in a MongoDB collection. Each document contains details about a sale, including a list of items that were sold. In your scenario, you need to perform aggregation on these items to extract meaningful insights. The aim is to calculate quantities sold, total sales, and more, and organize the results in a manner suitable for further processing or reporting.

Here’s a brief overview of your initial documents structure:

Employee Details: Identification of the staff involved in the transaction.

Store Information: The store from where the transaction occurred.

Transaction Items: Each sale consists of various items with their properties (item name, price, quantity, etc.).

Transaction Summary: Total amounts, taxes, and discounts related to the sale.

The Initial Attempt

Your first attempt at using the aggregation framework didn’t yield the expected results. This can be common when getting adjusted to the MongoDB aggregation pipeline.

Original aggregation query:

[[See Video to Reveal this Text or Code Snippet]]

The Expected Outcome

The objective was clear. You sought to extract a well-structured output of transactions by store, with detailed item-wise sales information. The target structure included:

SKU (Item Name)

Sold Quantity

Total Amount Sold

Other relevant details grouped by each store.

The Solution

Upon realizing the limitation in the aggregation pipeline with the previous query, adjustments were made that correctly utilized MongoDB capabilities.

Adjusted Data Model

Change the item structure in the collection before applying aggregation:

Flatten the nested items array.

Ensure all necessary fields are present and correctly typed.

Revised Aggregation Query

The successful aggregation can be achieved through the following steps:

Match the Date Range and Order Type: Refine the search criteria for orders based on their creation date.

Unwind the Items: This step allows us to deal with each item as a distinct document, simplifying access to item details.

Group by Store and SKU: Collate totals by store, making aggregation intuitive and clear.

Here’s the updated aggregation query:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Achieving effective data aggregation in MongoDB requires understanding both the data structure and the correct usage of the aggregation framework. The revised approach to unwinding and grouping significantly enhances clarity and usability of the results. By following the outlined steps, you will be able to extract insightful data from nested collections, enriching your understanding of transaction metrics for your stores.

Final Notes

Always ensure your data model is conducive for aggregation.

Test and iterate your queries to suit your specific data needs.

Thanks for stopping by, and happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]