Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How Does Backpropagation Work In CNNs? - AI and Machine Learning Explained

  • AI and Machine Learning Explained
  • 2025-09-21
  • 24
How Does Backpropagation Work In CNNs? - AI and Machine Learning Explained
A I AlgoriA I TrainingArtificial IntelligenceBackpropagationC N NDeep LearningImage RecognitionMachine LearningNeural NetworksObject Detection
  • ok logo

Скачать How Does Backpropagation Work In CNNs? - AI and Machine Learning Explained бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How Does Backpropagation Work In CNNs? - AI and Machine Learning Explained или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How Does Backpropagation Work In CNNs? - AI and Machine Learning Explained бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How Does Backpropagation Work In CNNs? - AI and Machine Learning Explained

How Does Backpropagation Work In CNNs? Have you ever wondered how artificial intelligence systems learn to recognize images and improve over time? In this informative video, we'll explain the process behind how convolutional neural networks (CNNs) are trained to identify objects in pictures. We'll start by describing what happens during a forward pass, including how filters and activation functions work together to extract features like edges and textures from images. You'll learn about the role of pooling layers in making the process more efficient and how the network produces its predictions.

Next, we'll explore how the CNN compares its predictions to real labels using a loss function, and how this difference guides the learning process. We’ll then explain the concept of backpropagation, focusing on how the network adjusts its filters and weights through a method called gradient descent. This process involves calculating the contribution of each part of the network to the overall error, starting from the output layer and moving backward through the model.

Understanding this process is essential for grasping how AI models power applications like facial recognition, object detection, and even art creation tools such as DALL·E and Midjourney. Join us to learn how backpropagation helps AI systems improve their accuracy and reliability. Subscribe to our channel for more in-depth explanations about AI and machine learning.

⬇️ Subscribe to our channel for more valuable insights.

🔗Subscribe: https://www.youtube.com/@AI-MachineLe...

#ArtificialIntelligence #MachineLearning #DeepLearning #CNN #Backpropagation #NeuralNetworks #AITraining #ImageRecognition #ObjectDetection #AIAlgorithms #DataScience #AIApplications #TechEducation #AIExplained #LearnAI

About Us: Welcome to AI and Machine Learning Explained, where we simplify the fascinating world of artificial intelligence and machine learning. Our channel covers a range of topics, including Artificial Intelligence Basics, Machine Learning Algorithms, Deep Learning Techniques, and Natural Language Processing. We also discuss Supervised vs. Unsupervised Learning, Neural Networks Explained, and the impact of AI in Business and Everyday Life.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]