Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Use distinct() by Group with Conditions in R's dplyr

  • vlogize
  • 2025-04-02
  • 1
How to Use distinct() by Group with Conditions in R's dplyr
Using distinct() by group and conditional on a value from another column in Rdplyr
  • ok logo

Скачать How to Use distinct() by Group with Conditions in R's dplyr бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Use distinct() by Group with Conditions in R's dplyr или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Use distinct() by Group with Conditions in R's dplyr бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Use distinct() by Group with Conditions in R's dplyr

Learn how to effectively filter and manage duplicates in your R data frames using `distinct()` by group with specific conditional criteria using dplyr.
---
This video is based on the question https://stackoverflow.com/q/69666290/ asked by the user 'statsnstuff' ( https://stackoverflow.com/u/17073044/ ) and on the answer https://stackoverflow.com/a/69666341/ provided by the user 'akrun' ( https://stackoverflow.com/u/3732271/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: Using distinct() by group and conditional on a value from another column in R

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
Introduction

When working with datasets in R, especially large ones, encountering duplicate rows is common. However, sometimes you want to keep duplicates under certain conditions and filter them out under others. In this guide, we will explore how to use the distinct() function in the dplyr package to handle duplicates in an efficient and manageable way.

The Problem

Imagine you have a dataset with several duplicate entries, and you need to ensure that only certain duplicates are kept based on a condition in another column. For instance, let’s say we have a dataset structured like the following:

id: identifies a group

ind: indicates a condition (0 or 1)

dt: a datetime column

The key challenge here is to filter duplicates based on the value of ind. Specifically, we want to:

Keep all duplicates when ind == 1.

Remove duplicates when all corresponding ind values are 0, retaining just one row.

If there are rows with ind == 0 and ind == 1 for the same dt, we want to keep the row where ind == 1.

Now let's dive into the solution.

The Solution

Step 1: Load Necessary Library

First, ensure you have the dplyr package installed and loaded:

[[See Video to Reveal this Text or Code Snippet]]

Step 2: Create Example Dataset

Let's create a sample dataset that replicates our problem scenario:

[[See Video to Reveal this Text or Code Snippet]]

Step 3: Filtering Duplicates

We can now apply the filter() function along with group_by() to achieve our desired output. Here are two approaches you can use:

Method 1: Using filter()

This method allows us to maintain clarity in our logic while applying the conditions we outlined initially.

[[See Video to Reveal this Text or Code Snippet]]

This approach groups the data by id and ind, checks the conditions, and appropriately retains or filters duplicates.

Method 2: Using arrange()

Alternatively, you can achieve the same result by rearranging the dataset prior to filtering:

[[See Video to Reveal this Text or Code Snippet]]

By arranging first, we ensure that when duplicates exist, the rows with ind == 1 come before those with ind == 0.

Final Output

Both methods will give you the resulting dataset without unwanted duplicates based on your conditions. The output should look like this:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

Using R's dplyr package, we can efficiently manage duplicates in data frames based on conditional checks. With the solutions detailed above, you can easily customize your data manipulation workflows to fit your specific needs. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]