Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть GraphSAGE: Inductive Representation Learning on Large Graphs (Graph ML Research Paper Walkthrough)

  • TechViz - The Data Science Guy
  • 2021-09-21
  • 12242
GraphSAGE: Inductive Representation Learning on Large Graphs (Graph ML Research Paper Walkthrough)
graphsage paper summaryGraphSAGE: Inductive Representation Learning on Large GraphsGraphs ML Research Paper Walkthroughgraphsagegraph neural networksgnnsgraphsage paper explainedaigraph mlmachine learninggraph representation learninggraph inductive learning frameworkartificial intelligencegraph sage papergraph neural networkgraphsmachine learning with graphsembeddingsresearchtechviz data science
  • ok logo

Скачать GraphSAGE: Inductive Representation Learning on Large Graphs (Graph ML Research Paper Walkthrough) бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно GraphSAGE: Inductive Representation Learning on Large Graphs (Graph ML Research Paper Walkthrough) или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку GraphSAGE: Inductive Representation Learning on Large Graphs (Graph ML Research Paper Walkthrough) бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео GraphSAGE: Inductive Representation Learning on Large Graphs (Graph ML Research Paper Walkthrough)

#graphsage #machinelearning #graphml
In this video, we go will through this popular GraphSAGE paper in the field of GNN and understand the inductive learning methodology on large graphs.

⏩ Abstract: Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general, inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions.

Please feel free to share out the content and subscribe to my channel :)
⏩ Subscribe -    / @techvizthedatascienceguy  

⏩ OUTLINE:
0:00 - Abstract and Introduction
01:00 - Visual Illustration of GraphSAGE
04:21 - Embedding Generation algorithm with GraphSAGE
08:00 - Learning Parameters of GraphSAGE
10:46 - Aggregator Architectures (Mean Aggr, LSTM Aggr, Pool Aggr) and Wrap-up

⏩ Paper Title: Inductive Representation Learning on Large Graphs
⏩ Paper: https://arxiv.org/abs/1706.02216v4
⏩ Author: William L. Hamilton, Rex Ying, Jure Leskovec
⏩ Organisation: Stanford

Graph Machine Learning Playlist:    • DEEPWALK: Online Learning of Social Repres...  

**********************************************
If you want to support me financially which is totally optional and voluntary ❤️
You can consider buying me chai ( because I don't drink coffee :) ) at https://www.buymeacoffee.com/TechvizC...
❤️ Support using Paypal - https://www.paypal.com/paypalme/TechV...

**********************************************
⏩ Youtube -    / techvizthedatascienceguy  
⏩ LinkedIn -   / prakhar21  
⏩ Medium -   / prakhar.mishra  
⏩ GitHub - https://github.com/prakhar21
⏩ Twitter -   / rattller  
*********************************************

Tools I use for making videos :)
⏩ iPad - https://tinyurl.com/y39p6pwc
⏩ Apple Pencil - https://tinyurl.com/y5rk8txn
⏩ GoodNotes - https://tinyurl.com/y627cfsa

#techviz #datascienceguy #representation #research #graphs
About Me:
I am Prakhar Mishra and this channel is my passion project. I am currently pursuing my MS (by research) in Data Science. I have an industry work-ex of 3 years in the field of Data Science and Machine Learning with a particular focus on Natural Language Processing (NLP).

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]