Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть How to Apply Multiple Transformations on Your Dataset Using PyTorch

  • vlogize
  • 2025-04-08
  • 2
How to Apply Multiple Transformations on Your Dataset Using PyTorch
How to apply 2 different transformation on my dataset using pytorchimage processingpytorch
  • ok logo

Скачать How to Apply Multiple Transformations on Your Dataset Using PyTorch бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно How to Apply Multiple Transformations on Your Dataset Using PyTorch или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку How to Apply Multiple Transformations on Your Dataset Using PyTorch бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео How to Apply Multiple Transformations on Your Dataset Using PyTorch

Learn how to efficiently apply multiple transformations, such as `Resize()` and `ToTensor()`, to your dataset in PyTorch for image processing.
---
This video is based on the question https://stackoverflow.com/q/75807711/ asked by the user 'Formal_this' ( https://stackoverflow.com/u/21016031/ ) and on the answer https://stackoverflow.com/a/75807745/ provided by the user 'Edwin Cheong' ( https://stackoverflow.com/u/7617767/ ) at 'Stack Overflow' website. Thanks to these great users and Stackexchange community for their contributions.

Visit these links for original content and any more details, such as alternate solutions, latest updates/developments on topic, comments, revision history etc. For example, the original title of the Question was: How to apply 2 different transformation on my dataset using pytorch

Also, Content (except music) licensed under CC BY-SA https://meta.stackexchange.com/help/l...
The original Question post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license, and the original Answer post is licensed under the 'CC BY-SA 4.0' ( https://creativecommons.org/licenses/... ) license.

If anything seems off to you, please feel free to write me at vlogize [AT] gmail [DOT] com.
---
How to Apply Multiple Transformations on Your Dataset Using PyTorch

When working with images in deep learning applications, it’s essential to prepare your dataset correctly. A common requirement for preparing image data is applying transformations. For instance, you might want to resize images and convert them to tensors in preparation for a Convolutional Neural Network (CNN). If you're unfamiliar with how to combine transformations in PyTorch, this post will guide you through the process step-by-step.

The Problem at Hand

You have a directory of images stored in "/content/sub_folder" and you wish to apply two transformations:

Resize the images to a uniform size of 224x224 pixels.

Convert the images to PyTorch tensors using ToTensor().

Separately, these transformations work well. You can apply Resize() like this:

[[See Video to Reveal this Text or Code Snippet]]

And you can also apply ToTensor() like so:

[[See Video to Reveal this Text or Code Snippet]]

However, the challenge arises when you attempt to combine both transformations and apply them simultaneously to the dataset. In the following sections, we will discuss how to accomplish this elegantly.

Solution: Using Compose to Combine Transformations

Fortunately, PyTorch provides a simple and efficient way to apply multiple transformations using the Compose method from torchvision.transforms. This allows you to chain multiple transformations together, ensuring that they are applied in the order specified.

Step-by-Step Instructions

Import the Required Libraries: Start by importing the necessary modules from torchvision:

[[See Video to Reveal this Text or Code Snippet]]

Create a Composition of Transformations: Use T.Compose() to combine Resize and ToTensor into one transformation sequence.

[[See Video to Reveal this Text or Code Snippet]]

Load the Dataset with Transformed Images: Now load your dataset using ImageFolder() and pass the composed transformations to the transform parameter.

[[See Video to Reveal this Text or Code Snippet]]

Ready for Use: Your dataset is now prepared with both transformations applied to each image. You can proceed to use dataset for your CNN application.

Code Example

Here’s the complete code snippet that incorporates all the steps mentioned above:

[[See Video to Reveal this Text or Code Snippet]]

Conclusion

By using T.Compose, you can easily apply multiple transformations to your dataset simultaneously in PyTorch. This approach not only saves you time but also ensures that your images are uniformly pre-processed to meet the input requirements of your neural network.

Now that you understand how to apply multiple transformations, you can experiment with additional transformations like normalization, cropping, or augmentation as per the requirements of your deep learning task. Happy coding!

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]