Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть Haystack US 2025 - John Berryman: Lexical Love: Rediscovering the Power of Lexical Search in RAG

  • OpenSource Connections
  • 2025-07-09
  • 61
Haystack US 2025 - John Berryman: Lexical Love: Rediscovering the Power of Lexical Search in RAG
  • ok logo

Скачать Haystack US 2025 - John Berryman: Lexical Love: Rediscovering the Power of Lexical Search in RAG бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно Haystack US 2025 - John Berryman: Lexical Love: Rediscovering the Power of Lexical Search in RAG или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку Haystack US 2025 - John Berryman: Lexical Love: Rediscovering the Power of Lexical Search in RAG бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео Haystack US 2025 - John Berryman: Lexical Love: Rediscovering the Power of Lexical Search in RAG

Retrieval-Augmented Generation (RAG) is often built around semantic search, where documents are chunked, embedded as vectors, and retrieved based on their meaning. While this approach is powerful, it also comes with significant challenges—large indexes, clunky filtering mechanisms, and a lack of transparency in search results. Perhaps most critically, semantic search struggles with exact matches, making it difficult to retrieve specific IDs, phrases, or jargon words that weren’t present in the original model’s training data. In this talk, we’ll explore the role of lexical search in RAG workflows, highlighting how it can solve many of these issues. We’ll start with an overview of how lexical search works, including indexing, analysis, and search techniques like Boolean queries, faceted search, and phrase matching. We’ll contrast it with semantic search, explaining when and why you might want to use lexical search instead of vector-based methods. From there, we’ll walk through a practical implementation of lexical search in RAG. Using real-world examples, we’ll demonstrate how to index data, structure search queries to maximize relevance, and integrate lexical search into a RAG pipeline. We’ll also show how language models can interact with search results dynamically, refining queries and applying filters in response to user input. Of course, lexical search isn’t a silver bullet. We’ll discuss its limitations. And then we'll briefly introduce some of the hybrid approaches—ways to combine the strengths of both lexical and semantic search and possibly get the best of both worlds. By the end of this session, you’ll have a clear understanding of how lexical search fits into RAG, when to use it, and how to implement it effectively. If you’re working with LLM applications and want to make search more precise, transparent, and adaptable, this talk is for you.

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]