Logo video2dn
  • Сохранить видео с ютуба
  • Категории
    • Музыка
    • Кино и Анимация
    • Автомобили
    • Животные
    • Спорт
    • Путешествия
    • Игры
    • Люди и Блоги
    • Юмор
    • Развлечения
    • Новости и Политика
    • Howto и Стиль
    • Diy своими руками
    • Образование
    • Наука и Технологии
    • Некоммерческие Организации
  • О сайте

Скачать или смотреть This AI agent beats OpenAI GPT4o in Web Browsing!??

  • Jack See
  • 2024-10-08
  • 109
This AI agent beats OpenAI GPT4o in Web Browsing!??
  • ok logo

Скачать This AI agent beats OpenAI GPT4o in Web Browsing!?? бесплатно в качестве 4к (2к / 1080p)

У нас вы можете скачать бесплатно This AI agent beats OpenAI GPT4o in Web Browsing!?? или посмотреть видео с ютуба в максимальном доступном качестве.

Для скачивания выберите вариант из формы ниже:

  • Информация по загрузке:

Cкачать музыку This AI agent beats OpenAI GPT4o in Web Browsing!?? бесплатно в формате MP3:

Если иконки загрузки не отобразились, ПОЖАЛУЙСТА, НАЖМИТЕ ЗДЕСЬ или обновите страницу
Если у вас возникли трудности с загрузкой, пожалуйста, свяжитесь с нами по контактам, указанным в нижней части страницы.
Спасибо за использование сервиса video2dn.com

Описание к видео This AI agent beats OpenAI GPT4o in Web Browsing!??

Support me on Patreon where you can tell me what AI paper you want me to cover next!
  / membership  


Paper: Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents




https://arxiv.org/abs/2408.07199

Abstract
Large Language Models (LLMs) have shown remarkable capabilities in natural language tasks requiring complex
reasoning, yet their application in agentic, multi-step reasoning within interactive environments remains a
difficult challenge. Traditional supervised pre-training on static datasets falls short in enabling autonomous
agent capabilities needed to perform complex decision-making in dynamic settings like web navigation. Previous
attempts to bridge this gap through supervised fine-tuning on curated expert demonstrations often suffer from
compounding errors and limited exploration data, resulting in sub-optimal policy outcomes. To overcome
these challenges, we propose a framework that combines guided Monte Carlo Tree Search (MCTS) search
with a self-critique mechanism and iterative fine-tuning on agent interactions using an off-policy variant of the
Direct Preference Optimization (DPO) algorithm. Our method allows LLM agents to learn effectively from both
successful and unsuccessful trajectories, thereby improving their generalization in complex, multi-step reasoning
tasks. We validate our approach in the WebShop environment, a simulated e-commerce platform—where it
consistently outperforms behavior cloning and reinforced fine-tuning baseline, and beats average human
performance when equipped with the capability to do online search. In real-world booking scenarios, our
methodology boosts Llama-3 70B model’s zero-shot performance from 18.6% to 81.7% success rate (a 340%
relative increase) after a single day of data collection and further to 95.4% with online search. We believe
this represents a substantial leap forward in the capabilities of autonomous agents, paving the way for more
sophisticated and reliable decision-making in real-world settings.




~~~~~~~~

Hi there, I am Jack See, a PhD student who is working on AI models for molecular graph prediction. Enjoy yourself and leave any comments!



Find me on:
-Twitter: https:/_/twitter.com/JackSee47284524 (remove the underscore)
-Linkedin: https:/_/www.linkedin.com/in/jack-see-096212244/ (remove the underscore)


#ai #research #airesearch #machinelearning #deeplearning #largelanguagemodels #gpt

Комментарии

Информация по комментариям в разработке

Похожие видео

  • О нас
  • Контакты
  • Отказ от ответственности - Disclaimer
  • Условия использования сайта - TOS
  • Политика конфиденциальности

video2dn Copyright © 2023 - 2025

Контакты для правообладателей [email protected]